Notes on Random Feature Regression and Wide Neural Networks
Mihai Nica
February 17, 2021

Contents

1 Feature Regression and the Random Feature Model
1.1 Definition of the model and main results e
1.2 Random Feature Regression L
1.2.1 Random Feature Model L
1.2.2 “Train-Only-the-Last-Layer” Neural Network
1.2.3 Double Descent Curve 0L o e e e e
1.3 Remarks and Extensions oL e
1.3.1 The Kernel Trick o . . L e
1.3.2 Extensions - Weights/Biases and Multi-dimensional output
1.4 Proofs
1.4.1 Gradient Descent Dynamics - Proof of Theorem 6 Part 1
1.4.2 Solution to Dynamics - Proof of Theorem 6 Part 2
1.4.3 Distribution at initialization - Proof of Proposition 7
1.4.4 Distribution after training - Proof of Theorem 9 Part 1
1.4.5 Conditioning Gaussian Vectors - Proof of Theorem 9 Part 2

2 Neural Net Gaussian Processes and the Neural Tangent Kernel
2.1 Main idea - Linear Approximation of a Neural Network
2.2 Detailed Results o
2.2.1 Definition of Deep Neural Network i i
2.2.2 Neural Network Gaussian Processes o o e
2.2.3 The Neural Tangent Kernel
2.3 Proofso e
2.3.1 Proof of Neural Network Gaussian Process
2.3.2 Proof of Neural Tangent Kernel

3 References

11
11
12
12
12
13
14
14
15

16

1 Feature Regression and the Random Feature Model

’ Notation \ Space object lives in \ Definition
New N nee = Number of examples
Nin N n;n = Input dimension
Npar N Nper = Number of parameters,
2@y R7in x R! 2@y = i®training example for 1 < i < ne,
(Note: The output dimension here is y® € R! but this can be generalized
to R™e«t without much trouble. I am keeping it R! to keep things a bit
easier to understand)
X,y (R7in)"er x Rmex Notation used for all the training examples together
X,y = (x(i),y(i))nm
i=1
T R™in Generic point in the input space R™i»
0 R"par Vector of all the parameters of the model (e.g. all the weights and biases
together)
0; R7par Parameters at time ¢ along some sequence of parameters (e.g. how
parameters evolve under gradient descent)
f(x;0) f i R%n x R"ar — R Model function at generic input x and parameters 6 (e.g. a regression
model or a neural network)
Vof(x;0) Vo f : R%n x RMpar — Gradient of the model w.r.t the parameters thought of as a vector in
Rmpor R7rar (Vg f), (x;0) = g—gi(a?;ﬁ) for 1 < i < npgr
f(x;0) f(X;:) : Rpar — RMes Stacked vector of the output for all the examples
f@);0)
f(x;0)= : € Rew
ftne);)
K(z,2) K :R™n x R"» —» R A “kernel”. Can be thought of a generalization of a dot product
K(z,2') = (z,2")
KX, X) Res x RMex The matrix you get by applying the K(-,-) to all the input examples from
XK (X,X) = [K («,aD)] 77 | € Rrer x Res
o(x) ¢ : Rin — Riwar Feature map with 11, features in it¢(z) = (61(),..., Pn,,, () € RMer
d(X) R"par x RMex Feature map applied to the training examples
¢z M)
d(X) = : € Rpar x RMex
® (x(nex))
N(p,X) Rim (1) Notation for a Gaussian random vector with mean p € R*™(") and
covariance matrix ¥ € Rdm(u)xdim(n)

Other things, I sometimes write the sizes of the matrices during matrix multiplication to make sure it all works

out! e.g.

A=DB7C

nxXm nXppXm

means that A is an n x m matrix, B is an n X p matrix, and C is a p X m matrix.

1.1 Definition of the model and main results

Definition 1. [Feature regression model with Gaussian initialization] As is typical in supervised learning, suppose
we are given a list of n., input examples z(*) € R and the corresponding outputs examples y* € R! for 1 <i < ney.!
Our goal is to find a function f : R — R! that fits these given examples well and hopefully generalizes to other
unseen test points z € R™n 3 € R! from the data distribution.

One way to do this is the following 2 step procedure:

n the discussion here, the output space can be generalized to y € R™out for some noyu: € N without any significant changes. We are
using the output dimension neqyt = 1 here for simplicity.

Step 1. Choose ny,, feature maps ¢; : R™ — R for 1 < i < n,q, that capture different features of the inputs
x € R™. This creates a feature vector ¢(x) € R for each input x € R™n.

Step 2a. Set up the linear regression with n,,, coefficients using the features from Step 1. This is the
parameterized model f : R™n» x R"sr — R given by:

Npar
1

1
0 p(x) = 0:9i(z) (1)
VvV 1par 1xnpar nparx1 vV par 1:21

Step 2b. Initialize the coefficients to be a Gaussian random vector with independent standard mean zero
entries of variance 1: i.e. start 6y to be the random vector 6y ~ N(0, I"ra7). Then optimize the parameters 6 by
gradient descent on the loss function?

f(z;0) =

Neax

£0) = 3 1550 = V1P = 3 (7a®50) —)

For the theoretical discussion here, we will consider updating the parameters {6}, ., with ¢ being a continuous
time parameter evolving according to the gradient flow differential equation?®

d
aet = —OCVQL(et) (2)

1
VTpar
does not grow larger and larger. For example, since the 6; are initialized to independent Gaussian random vectors,

the f(x;00) is a Gaussian too with variance Var [f(z;0)] = —L-¢(2)T¢(x) = L= Y "74" ¢? (=) is proportional to the

Npar Npar i

Remark 2. The choice of the normalization constant

ensures that even if n,q, grows large, the function f(x;6)

average value of qﬁi(a:)z over all features 1 < ¢ < nyq,. Without the normalization constant in front, this variance
would tend to infinity as we add more and more features.

Example 3. Depending on the feature maps ¢ that are chosen, this model may be very simple or more complicated.

o If ny, = niy and ¢(z) = x is the identity, than this model is the classic linear regression model.

e If n;;, = 1 and ¢ contains the monomials ¢(z) = [1,z,2?,... 2"+ ~!] then this model is just polynomial
regression.

e A model that has received some attention recently is the random features model where we set ¢;(z) = w; -«
for some independent random variables w; € R™», 1 <14 < npqp

e One can set ¢(x) to be the output of a pretrained neural network for a related task. For example, if you are
doing image recognition, and have already trained ¢(z) from a large datatset, you can now do this regression
model to train a model that works on a new dataset more quickly.

Problem 4. Is there a way to analyze the resulting function we get if we run gradient flow long enough? i.e. Can
we understand the limiting function

J(#5000) := lim f(a;6r).
Some things we would like to know:

e Can we say anything about how the model generalizes on unseen data x?

e How does the choice of function ¢ effect the final output?

2This loss function uses all the given examples so it sometimes called “full batch gradient descent”. Tn practice, one often uses a subset
of the examples rather than all of them.

31n practice, it is more common to see the discrete time ¢t € N gradient descent update rule 6;41 = 6; —nVL(6;) rather than gradient
flow. It is not difficult to show that under mild assumptions that if the learning rate 7 is small enough then discrete time gradient
descent and continuous time gradient flow are almost the same. We will stick to gradient flow as the continous time nature of it makes
the calculus easier!

Solution 5. Yes we can! It turns out that this model has an analytical solution can be written entirely in terms of
the kernel K : R"™ x R"™ — R given by the scaled dot product of the features:

1 1 X
K(@.a)) = — o(@)76(a') = — 3" di(@)ei(a) 3)
Par 1xnpar nparx1 par ;4

This kernel can be thought of as a generalization of the inner product z - #’and it depends only on the feature
maps ¢ that were chosen in Step 1. The given n., examples X = (x(l), e ,x("ﬁz)) can be fed into the kernel to get
an neg X Ne, matrix K (X, X):

1 Nex

o) 6(X) = K2 @

DAT ney Xnpar nparXnex 1,5=1

K(X,X) =

It turns out that as long as this matrix is invertible*, then many questions about the limit f(x,60.,) can nicely
be written in terms of the inverse K (X, X) := (K(X, X)) "
Theorem 6. [Training dynamics of the model] Let K (z,2') = ——¢(x)T¢(2') be the kernel from (3) and let K (X, X)

Npar
be the Ney X Mey matriz from (4). Because the gradient of the model Vof(x;0)TVof(2';0) = K(x,7') does not
depend on 0 the following happens, For an arbitrary test point x € R"™i~ | the evolution of f(x;0;) can be written in
term of the kernelK (-,-), and the training data X,) as

%f(x; 0;) = aK (2, X)(Y — f(X;0;))

1Xneg neg X1

where K (x,X) is the row vector K(z,X) = np%(b(x)T p(X) = [K(x,x(l))]:l:l € Rixnex,
I1Xnegx 1Xnparnpar XMNex

Suppose in addition that the matriz K(X,X) is invertible. Then the training data will be perfectly fit with zero
training error:

f(X§000):y

and moreover we can explicitly solve to get the solution at any test point x as®

F(@;000) = f(x:00) = K (2, X)K (X, X)(Y — f(X;60))

1Xneg Nex XNex neg X1

fo0 — 0 = P(X)KHX, X) (Y — f(X;60))

par

Proposition 7. [Initial distribution of the model] Recall that the initial parameters 0y are independent Gaussian
with 8y ~ N(0,01™a). For any fized point x € R™~, the random variable f(x;60y) is Gaussian with mean and
variance given as follows

E [f(z;60)] =0, Var [f(z;60)] = K(z,)

(1) (ntest) (%) Ntest

Moreover, for any finite collection of test points Xiest = (xtest, ey Types), the vector f(Xiest; 6o) = {f(xtest; 00)] €
i=1

R™est 4s Gaussian with mean E [f(Xiest; 00)] = 0 and covariance matriz

i,j=1

Cov [(Xiesti 00)] = K (rests Xuest) = | K (@tiusofil)|

Remark 8. Sometimes people say “f(x;0) is a Gaussian process of mean 0 and kernel K (x,2’)” or write f(z;60y) ~
GP(0, K(z,2")) to mean exactly the statement of Proposition 17. This just means that any finite collection of points
gives a Gaussian vector with covariance matrix given by the kernel K.

Combining Proposition 7 and Theorem 6 gives us the distribution after training.

4Note that K (X, X) = ¢(X)T¢(X) is invertible if and only if the ne, feature vectors ¢(z(1)), ..., ¢(z(™e=)) are an independent set of
vectors in the space R™rar. This can only happen in the overparametrized regime where npar > n4y,. This is the regime we will focus on
here!

5A similar formula exists for intermediate times f(x;6;).

Theorem 9. For any test point x € R, f(x;0) is a Gaussian random variable with mean and variance given by

E[f(z;00)] = K(z,X)K (X, X) Y (5)

1Xnegx Nex XMex nex X1

Var [f(2;0s)] = K(z,2) — K(z, X)K (X, X)K (X,)

1Xnegx Nex XNex neg X1

Moreover, for any set of test points Xiest = (xglt, ... ,xg&ff“)) the joint distribution of the vector f(Xiest;000) is

also Gaussian with mean and covariance given by formulas similar to (5). Similar explicit formulas can be given for
f(x;0y) at any intermediate time 0 < t < co. The random variable f(x;0.) has the following equivalent interpretation
as a conditional probability: f(x;0) is equal in distribution to f(x;00) conditioned on the event f(X;00) =D, i.e.

P (f(z;0) € A) =P (f(z;600) € A[f(X;00) = V) VACR,

In the next few sections I will show the proofs, which are not too difficult. First some remarks!

1.2 Random Feature Regression
1.2.1 Random Feature Model

Definition 10. [Random feature model] One interesting choice of features ¢ is to choose them randomly. For
example, if we fix a non-linearity ¢ : R — R, one can make the features¢; independent random functions by setting

¢i(x) = ¢ ((yi,))

where y; € R™n are independently randomly chosen vectors and ¢ : R — R is some fixed non-linearity function.
Note that in this case the kernel K is given by:

Kle.w') = 2= 3 o ()0 (0027)

Since the various y; are independent, we are looking at an average of independent random variables! By the law of
large numbers,

K(z,2') = By [p (Y,) ¢ (Y, 2'))]

and this approximation will improve as npq, — 00.

1.2.2 “Train-Only-the-Last-Layer” Neural Network

Another example of a random feature model is to train a neural network where ONLY the weights on the last layer
are updated through training, and the weights on the first part of the network remain frozen to their values of
initialization. Imagine a network with hidden layer widths nq,...,np_1; and non-linearity ¢. The output of the
network can be written as a simple function of the last hidden layer fZ—1:

ow L-1 hid
W b) = —W ;0 b
f(x; W, b) N o (fF N 00') + o
, where the non-linearity ¢ is applied entry-wise. The trainable parameters of the model are the weights W and bias b
of the last layer, while the output of the previous layer fL=1(z;08'?) is always fixed to whatever it is at initialization.
This is precisely a random feature model with features given by the components of f“~!(z;wp). The relevant kernel
is:
o? _ T _
K(z,a') = Vwpy f (2 W,0) 'V oy 7 (2 W,) = %@ (Fr (@wo)) @ (fF ' (2swo)) + of

and in the limit that the size of the last hiddne layer ny_; — oo tends to infinitiy, we will again have by the law of
large numbers the convergence:

K (v,a') ~ oy By [0 (F57 @3 00) " 0 (P57 ('3 04°) | + o

So this model can be understood only through understanding this kernel! We will compute what this is in the next
section on neural networks.

The more interesting case is the full network case where ALL the layers are trained. You can think of this as a
random feature model where we train the features as we go!

1.2.3 Double Descent Curve

In simple example cases, by using probability theory to theoretically compute K, we can investigate how the model
performance depends on n,,,. Imagine the case where the training data is given as y) = <ﬂ, :1:(’)> for an unknown
vector 5. Then train the model using random features with ¢(r) = max{z, 0}, the ReLU nonlinearity. Here is a plot

Nex

on the y-axis vs the ratio on the

where they plot the test error for an unseen point E,), [(E [f(x;05)] — y)z]

Npar
x-axis (They compute the error in the limit that both ney, npar, nin all grow to infinity with the ratio being fixed.)
The left plot is exactly the model we discussed (no regularization) while the right plot has a regularization term
proportional to [|A]|* added to the loss function. Both plots are an example of the double descent phenomenon
where the test error first goes down, then goes up, and then goes down again. This kind of phenomenon shows that
in the extremely overparameterized case, the performance of the model can actually be very good. Unlike other
statistical models, it seems that overfitting does not seem to be a big issue with these models. [MM19, HMRT19]
have analysis of the random features regression model in this high dimensional setting. Here is a beautiful figure
from [MM19]showing the double descent curve.

3

— Prediction w— Prediction
3 d=100 0.9 3 d=100 |
a5l i d=200 |/] N i od=200
d = 300 A d = 300 1

Test error

']

Al
\j@‘

05

\
\
\.

Test error
e = o
N [-

4

=
n
T

»r"'r
-e'\ti}
gt

0 0.5 1 15 2

{0V

25 3
s = Nin

3.5

4

4.5

5

=}

2

25
/e = Nin

3

3.5

4

4.5

5

Figure 1: Random features ridge regression with ReLU activation (¢ = max{xz,0}). Data are generated via
yi = {B1,2;) (zero noise) with ||B31]|3 = 1, and ¥» = n/d = 3. Left frame: regularization A = 1078 (we
didn’t set A = 0 exactly for numerical stability). Right frame: A = 107%. The continuous black line is our
theoretical prediction, and the colored symbols are numerical results for several dimensions d. Symbols are
averages over 20 instances and the error bars report the standard error of the means over these 20 instances.

1.3
1.3.1

Remarks and Extensions
The Kernel Trick

Remark 11. Note that the results depends only on the kernel K (-,), but not actually on the features ¢(-) themselves.
This means that there is an alternate method to do the regression that replaces the step of choosing feature vectors ¢
with only choosing a kernel K (-,-). This kind of technique of working only with an abstract K and forgetting about
where it came from is sometimes called “the kernel trick”. Here is what that means in our setting:

Step 1: Choose a kernel function K : R%» x R%n — R ©

Step 2: For a given training set X,), define the estimator f(z) = E[f(2; 60)] from 5, which is given in terms
of K(-,-) only

This has the potential to be advantageous because it avoids dealing with the high dimension 7,4, and everything
is now instead in the “low” dimensions n¢; and n;,. In the same vein, we have replaced the task of choosing npq,
features ¢; : R"» — R with choosing a single kernel function K : R™» x R™» — R. Note that you still have to
store and invert the matrix K (X,X) which might have other types of issues. Depending on the application and
implementation, it might be better to compute only with K(-,-) or by using the original features.

6There are some terms and conditions that the kernel K must satisfy to guarantee everything will work like K (z,2') = K(2',z),
K(z,z) > 0. Essentially, K (z,z’) must satisfy all the axioms to make K (z,z’) a valid inner product. There is a theoretical result, known
as Mercer’s theorem, which says that every kernel K that satisfies these reasonable conditions actually arises as K (x,z’') = ¢(x)T ¢(z')
for some (possibly complicated) set of features ¢. I won’t go into the details here!

Remark 12. Even if one doesn’t carry out the computation using K (-, -), the explicit formulas from Theorem6 can be
extremely useful for theoretical analysis. For example, we can measure how well the method overfits by examinging
f(x; 0) for points x outside the training set. As a concrete setup, one can suppose that X',) are drawn independently
from some distribution y, and then the generalization error E,), [(E [f(2:050)] — y)?| measures the average loss
of the network to a test point outside of X',). In some cases the formulas from Theorem 6 can be used to explicitly
calculate this and understand generalization error.

Remark 13. There is also an equivalent Bayesian point of view on this where training the model is thought of as a
Bayesian update of the weights according to the information given by X',). I won’t go into this here. You can find
some of this in the book Gaussian Processes for Machine Learning by Rasmussen & Williams.

1.3.2 Extensions - Weights/Biases and Multi-dimensional output

Remark 14. One can also consider a model of which includes weights and biases so the model is now

UW T
0) = —W b
f(ﬂ?,) \/W ¢ (.T) + oy
where now 6 = {W}U{b} includes all the weights and biases together, and where the initialization is now W ~ N (0, 1)

and b ~ N(0,1) are still independent standard Gaussians. This fits into the previous setup by scaling the features
by ow making one of the features a constant o,. The kernel in this case becomes:

02
K(z,2") = Vo f(2;0) Vo f(2;0) = E[f(x:00) f(2;00)] = —"~0(2)" d(2) + o}

Nfeat

Note that for everything to work out without any other changes, its important that the parameters are always
initialized to standard Gaussians N(0,1), and the scaling by oy, o is put in the definition of the function f(x;0)
(as opposed to having W ~ N(0,03,) and b ~ N(0,07) and omitting the constants oy, 03, from the definition of
f(x;0)). The reason this is important is because there are two parallel parts of the puzzle. One part is about
the gradient Vo f(z;0)TVof(z;0), and the other part is about the covariance E [f(z;6p)f(2;60)]. We want these
two different pieces to gel together, which means we must always have the weights be A/(0,1); changing the variance
to something else scales the covariance term but not the gradient term.

Remark 15. One can also consider the output dimension to be a general ngy;, rather than just 1 dimensional. In
this case one needs to think of the kernel K(x,2') = ¢7(x)¢(z') as as a map K : R™in x R%in — RMout x RMout 7,
Equally well, you can look at the individual components of the model f(z;0) = [fi(%;0),. .., fn...(z;0)]T and set:

Kij(z,2") = Vo fi(2;0) Vo f;(';0)
— E[fi(2:0)f;(a';0)]
For the application that we are going to look at it will turn out that the only elements which will be non-zero are
going to be the diagonal elements Kj;;. For this reason I'm always going to stick to thinking of kernels as being

R-valued and I'll use components. Note that some authors think of these things as being matrix valued with is why
they sometimes have formulas involving the tensor product ® in their formulas; I'm going to avoid this notation.

1.4 Proofs
1.4.1 Gradient Descent Dynamics - Proof of Theorem 6 Part 1
The first observation is to calculate the gradient Vg f(x;6) for this model using the definition (1). In this case, this

is®

1

Vof(z;0) = o(x) (6)

PaAT npgrx1

"You can see this from the formula K(z,2') = ¢(z)T é(x)

Nout XNMexNex XMout
8Note that I’'m doing all the calculation as vectors/with matrix multiplication because the final answer can be cleanly written that
way. It is a good exercise (and often how I actually did the computation!) to do it all explicitly in coordinates. E.g. write out
fx;0) = 327797 9,09 () so you can directly verify %f(w; 0) = ¢i(x)
k2

i=1

The miracle here is that the gradient does not depend on 6 at alll This is the key feature that will eventually
allow us to solve the model. The gradient flow dynamics can then be written using chain rule as:

4

al = _avﬁi(f) "
= —aVyf(X;0)(f(X;0:) =)
apa’r ex ex

= - X X:0;) —
Vg o) L0

It is not clear how to solve this differential equation as the evolution of §; depends on the values f(X’;6;), which
we don’t know because we need to solve for ;! The trick to solving this is to look directly at how the function
f(x;0;) evolves and solve for that first without directly solving for the parameters 6;. We can compute as follows by
chain rule again and plugging in (6) and (7) to get

b :60) = Vo007 Lo,

de bingar AL
— L 6@)" H(X) (f(X:6,) - V) ®)

PAT 1XnparnparXnez neg X1
= —aK(z,X)(f(X;6,) — V) (9)

1.4.2 Solution to Dynamics - Proof of Theorem 6 Part 2

The nice formula for % f(x;0;) is solveable to give the exact formula during training. As it is written now the
evolution of f(x;6;) depends on f(X;60;). To “close the loop” and make this into something we can solve, we are
going to plug in the training examples we have = (), ... 2 = 2("=), You can think of doing this one at a time
and stacking up the result into a big vector. In vector form this can be written succinctly in terms of the vector
f (X;6,) which is the vector with f(z(1);6,)..., f(z("=);0,) to get

SHX:0) = =" 9(X)T p(X) (F(X:0) V)

dt PAT nex Xnparnpar XNex neg X1

neg X1

= —aK (X, X)(f(X;6;) — D)

nex XMNex nex X1

Nex

where we recall the matrix K (X, X) = $¢(X)T¢(X) = [K(z®,2())] . Finally, our differential is a closed

system where the evolution of the vector f(X;0;) depends on f(X;6;) itself. Because the matrix K (X, X) is constant
and doesn’t depend on t, this type of equation is easily solved. To make the solution more transparent, let us do the
substitution v; = f(X;0;) — Y. Notice that % (X;0,) = %vt. So the differential equation for v; is simply

d
Tl = —aK (X, X)v;

which is just a constant coefficient vector differential equation®. This has solution given by the matrix exponential
v = et (X.X),
Substituting v; back now gives the solution for f(X’;6;)
F(X:00) = Y + e (F(X560) - V) (10)

Right away we can notice that as long as K(X,X) is not degenerate, then lim; o, e~ *5(*X) = 0 and so
lim; o f(X;60¢) = Y, or in other words that our training data is fit perfectly.
We can finally plug the solution (10) into the evolution of f(z;6;) from (8) to get

300 = —ak (e, X)X (5 (3 6) -)

9This differential equation is the vector/matrix version of the scalar differential equation ¥’ = —ay which has solution y(¢) = e~“*y(0)

where K(z,X) = \/%(b(x)TﬂX). This gives & f(x;6,) explicitly so we only have to integrate with respect to

t to solve!® to get
J(@302) = (3 00) + K (0, X) K~ (X,) (75X 1) (£ (x:00) V) (1)

We can now easily compute the limit assuming that K (X, X') is non-degenerate so that lim;_, o, e~ HK(X,X) —

f(x;000) = lim f(z;6;) (12)
fx;00) — K (2, X) K~ (X, X) (f (X;60) — V)

This gives the final solution f(z;60.) explicitly in terms of the initialization f(x;6p).
Note that we can get an explicit solution for ; in the same way by plugging in the solution f(X’;6;) into the
differential (7) to get the solution

% = 0T) (1 (3300)
— 0~ by = —— (XK (2, 2) (7KW) (7 (x:6) - D) (13
— o = ———G(X)K (X, X) (¥~ f(X:60)

Npar

1
v/Mpar
and more features, the amount each parameters need to change during training shrinks. Note also by computing

(Boe — 00)" (Aos — o) using 13 we get that:

Note that the amount any individual weights change scales like O (): this means that as we have more

180 — Boll” = (¥ — f(X;60)) K1 (X, X)(Y — f(X;060))

1x1 IXneg Mex XNex neg X1

meaning that the total norm of the change stays O(1) even as the number of parameters grows.

1.4.3 Distribution at initialization - Proof of Proposition 7

The key to part 3 is to notice that f(x;6p) is a mean zero Gaussian 6y which is simply multiplied by the features
¢(x). Gaussian are preserved under this type of multiplication.

Fact 16. If X is Gaussian random variable X ~ N(ux,Xx) and if Y = a + BX then Y is Gaussian too with
Y ~N(a+ Bux, BExB")

Proposition 17. Recall that the initial parameters 0y are independent Gaussian with 6y ~ N(0,c1™"). For any
fized point x € R™ | the random wvariable f(x;0y) is Gaussian with mean and variance given as follows

E[f(x;600)] =0, Var[f(z;00)] = K(z,x)

Moreover, for any finite collection of test points Xyest = (mﬁlt, e ,xﬁZ;;“)) , the vector f(Xiest; 00) = [f(:cl(t?st, 90)] .
R™est 4s Gaussian with mean E [f(Xiest; 00)] = 0 and covariance matriz

Ntest

Cov [(Xiesti 00)] = K (Xrests Xeest) = | K (fihy 212h0)|

1,j=1

Proof. This follows directly from Fact 16 since 6y ~ N(0,01"") and f(z;60) = \/nl? ()76, is a linear transfor-

mation of 6. Note that the variance of f(z;6p) arises from K(z,2) = ——¢(2)Té(z). Similarly, f(Xiest;00) =

Npar

\/%qb()\?test)Teo is also linear transformation of the original weights. In this case the covariance matrix for
A (Xiest) T 0o is now given by —Z—d(Xiest)T ¢(Xiest) = K (Xiest, Xiest) as desired. O

Npar

100nce again, the vector/matrix integration we are doing looks slightly complicated, but it is the analog of the scalar integration
v = = y(t) = & (7" = 1) +y(0)

1.4.4 Distribution after training - Proof of Theorem 9 Part 1

Proof. Since f(x;0s) is an explicit linear transformation of f(x;6y) this will be Gaussian too, and we can compute
its mean and covariance. The calculation that E[f(7;0.)] = K(z, X)K1(X, X)) follows immediately by taking
expectation of both side of 12 since E [f(z,6y)] = 0 and E[f (X;6p)] = 0. Theorem 9 now follows by considering the
test set of points {z} U X which consists of a single test point z and the training data X'. By Proposition 17, this
vector can be understood as a mean zero Gaussian vector whose covariance has a nice block structure:

5 (| fie) =0 oo ([e |) - f[;(:c)) IZ% (14

negx X Negx XMegx

J{ ((ff ;; 92))]

Now the result of Part 1 and Part 2 of Theorem 6 (e.g. 12) can be interpreted as giving the vector [

f(z;00)
f(X;60)

as a linear transformation [} which is nicely written in block matrix form as follows:

1 —K(x,)K" X, X Kz, X)) K Y (x, X
|: f(x;@oo) :| _ 1x1 lx(il) neg:(xn;:z) |: f(xQHO) :| + 1(337:”) nem(Xn;z)"63)“ (15)
f(X50s0) 0 f(X56) 0
Neg X1 Nex XNeg Nex X1

f(z; 900)
)

F(X:0 } from the mean and covariance of

Hence by Fact 16, we can compute the mean and covariance of [

[JJ: ((;?.990)) } given in 14 as follows:
» V0
E({ F(2:050) }) B [K(x,X)K_l(X,X)nyXl
f(X:i0s0) |) oy
f(.’]:@) i 111 —K(l‘,X)K_l(X,X) 11 K(Z’,$) K(x7X) 111 1 0
el)=, e [i || iR

L Neg X1 Nex XNex 1 L nex X1 Nex XNex Nex XNex nex X1
1 Kz, X)KY(x,X) | [K(z,z) = K(z,X) K~ (X, X)K(X, z) 0

1x1 1Xneg

— 1Xneg Nex XNex 1x1 IXneg Nex XNex neg X1
0 0 0 0
L MeaX1 Nex XMNeg 1 L neg X1 Nex XMex
K(z,z) — K(z, X) K1 (X, X)K(X,z) 0
— 1x1 1Xnegp Nex XMNegx negp X1 IXnez
0
neg X1 Mex XNex

(Note that its not a surprise that the covariance matrix blocks involving f(X;0,) are zero as because we know
that f(X;0.) = Y exactly so it has no variance at all!) From this we can read off the variance of f(z;0) =
K(z,z)— K(z, X)K~1(X,X)K (X,) from the top-left block. The same technique works to compute the covariance
matrix for any arbitrary test set X7 or for f(x;0;) at any arbitrary time 0 < ¢ < oo using (11). O

1.4.5 Conditioning Gaussian Vectors - Proof of Theorem 9 Part 2

Finally, the result about conditioning follows from another standard fact about conditional Gaussian distributions.
The mean and covariance of our final model f(x;6,) happens to be precisely that of the conditional Gaussian
distribution. The mean and variance of the conditional Gaussian model comes from the following calculation:

. X
Fact 18. Let ny and ns be integers, and consider the Gaussian vector of dimension niy +nqg, X = { Xl } € Rutnz,
2

where X1 € R™ and X5 € R™ which has means
E [Xi] M1
E X = = =
X1=r=| 50y | = | o
with p € R™M¥™2 gnd iy € R™, py € R™ | and (ny + n2) X (n1 + n2) covariance matriz > which we decompose into
blocks

Ell X:12
[} (n1+n2)x(n1+n2) E21 E22

noXmny noXmng

10

Then, for any fized vector x € R"2, conditioned on the event {Xo = x}, the conditional distribution of X, € R™
is a Gaussian with mean and covariance structure given by:

E[Xi|[Xo=2]= 1 + 12 35 (x— p2)

ny X1 n1XN2ngxng ngX1

Cov[X;|Xo=2]=%11 — Z12 85 Zo

ny X1 N1 XN2ngXngN2Xny

2 Neural Net Gaussian Processes and the Neural Tangent Kernel

] Notation \ Space object lives in \ Definition
L N L= Number of hidden layers in the neural network
Niye.. ML N n; =Width of the i-th hidden layer
Nin = No N Ny = ng =input dimension, also sometimes known as the 0-th layer of the
network
Nout = NL+1 N Noyt = N1 =output dimension, also sometimes known as the L + 1-st
layer of the network
Wt RPeXme—1 Weight matrix connecting layer £ to £ — 1
bt R™e Bias vector for layer /¢
ow R Standard deviation of weight matrix entries
op R Standard deviation of bias entries
o(x) ¢:R—-ROR Non-linear activation function of the network. Note that we apply this
p:R" = R" function entry-wise when it is applied to vectors.
x R™in Generic point in the input space R™in
0 R7par Vector of all the parameters of the model (e.g. all the weights and biases
together)
0, R"par Parameters at time ¢ along some sequence of parameters (e.g. how
parameters evolve under gradient descent)
f(x;0) f:RMn x R"ar — R Model function at generic input x and parameters 6 (e.g. a regression
model or a neural network)
Vof(x;0) Vof : R%n x Rpar — Gradient of the model w.r.t the parameters thought of as a vector in
R7»ar R"ver, (Vo f); (w;6) = S (2;0) for 1 <i < npay
f(Xx;0) f(X;) i Rpar — RMe Stacked vector of the output for all the examples
f@h;0)
f(x;0) = . € Re=
f(znes); 6)
S (x,2") ¥ R™n x R™ — R The Neural Net Gaussian Process kernel. Encodes the variance of the ¢-th
layer of the network.
O (z, ") ¥ R%n x R"%n — R The Neural Tangent Kernel. Encodes the evolution of the gradient
descent for the ¢-th layer of the network.

2.1 Main idea - Linear Approximation of a Neural Network

The point of this section is to argue that in this limit, where the intermediate layer widths become very
wide, neural networks behave a lot like the random feature regression model. This might be surprising
because from their definition neural networks seem a lot more complicated than the feature regression model....the
most important difference being that the feature regression is linear in the parameters, while the neural network is
definitely non-linear.

One way to see why a wide neural network behaves like a linear feature regression model is to take the Taylor series
expansion of the neural network with respect to the weights. For a given initialization 6y, define the linearization

Sl (2;0) by

£l (2;0) := f(2;00) + Vo f(z:00)T (6 — 6o)

Clearly f(x;600) = fY"(x;600) and in fact, the suprising truth is that f(z;6;) ~ f!"(z;6;) for all times ¢ in wide neural
neworks! The approximation f(z;60) ~ f'"(z;6) turns out to be justified because during training each individual

11

parameter of 6, — 0y = O (ﬁ) , where n is the width of the intermediate layers. (This is very similar to the feature

1
. VMpar
its definition that f"(x;0) is a feature regression model (plus some random initialization) with features given by:

@(x;00) = Vo f(x;60)

Note that these features are random features because they depend on the initialization 6y,. Even though the
individual features are random, the thing that actually matters is the kernel ¢(z,0y)7 ¢(z,0y). By our analysis of
the random feature model, we know that as the number of parameters gets large, they tend to be averaged out. The
relevant kernel in the limit will be

regression model where we showed that 6; — 6y was proportional to .) This is useful because see can see from

E [Vof(x;00)" Vo f(2';600)]
This is precisely the kernel that drives the evolution of a neural network in the infinite width limit! One of the main
results of [LXST19] is that this approximation becomes more and more accurate as the size of the networks increase
in size. You can also understand the size of the error in terms of the difference between the function f and the linear
approximation f!".

Theorem 19. [From [LXST19]] Suppose the hidden layer widths are all equal so that ny = ... = np = n. Let
flin(x;0) be the linear approzimation to the network. Let 0; be the evolution of the parameters under gradient flow.
Then the following holds for all time t > 0 :

)

17157 (5 6) — f(a:6,)]| = O (
16: — o] = O(1)

ik

Vo f(z;00)" Vo f(a';6:) — Vo f(z:60)" Vo f(a's60)|| = O (

Si-

2.2 Detailed Results
2.2.1 Definition of Deep Neural Network

Definition 20. [A deep neural network] A deep neural net with input dimension n;,, output dimension 7., with
L hidden layers, intermediate layer widths ni,...,nr, and non-linearity function ¢ : R — R is defined as follows.
The output of the intermediate layers of the neural network f*(z;0) € R™and hf(z;0) € R™ for 1 < ¢ < L+1

are defined recursively using parameters 6§ = {We, bt 5;1 where weight matrices W*¢ € R™*™~1 and bias vectors
b € R™ by

Ty W 1 1
f (I’ 9) o /N1 nW)(nin'rLile + O—bnll)xl (16)

h'(z;0) = ¢ (h'(2;0)) (applied entry-wise)

410y OW o1 300 41
z;0) = — W h'(x:0) +0p b
f (') NI AT IR Y] n(ex’l) bne+1><1

The f functions are sometimes refereed to as the “pre-activation outputs” and the h functions are the “post-activation
outputs”’ of the layers. The output of the network is just defined to be the last layer output

fa;0) = f14 (a3 0)
with the convention that npi1 = neyue- As with the regression model, the scaling of \/%7 is chosen so that we can

take the limit nq,...,n; — oo and in this limit f(z;0) will makes sense. At initialization, 6y is set so that each of
the weights and biases are independent Gaussian vectors W;; ~ N'(0,1) and b¢ ~ N(0,1) where oy and o}, are some
fixed variance parameters.

2.2.2 Neural Network Gaussian Processes

An important difference between the feature regression model and neural networks is that two relevant kernels that
appear are NOT equal.

E [f(;60)f(2';60)] = 25 (2, 27)
Vo f(x;00)" Vo f(a';00) ~ 0" (z,2))

12

This means that the final formulas for the variance f(z;0.) is quite a bit more messy as there is no nice
cancellation, and the interpretation as a conditioned Gaussian model does not work as it did in the feature regression
model.

The first observation is that, as with the feature regression model, if the weights are initialized to Gaussians,
then the output of the network is also Gaussian. This is very similar to the feature regression model. Moreover,
in the limit that the intermediate widths go to infinity, the covariance structure can be calculated in terms of the
non-linearity ¢. The kernel ¥ is sometimes called the Neural Network Gaussian Process “NNGP” kernel.

Proposition 21. In the limit that the hidden layer widths ni,ny, ..., ny — oo,'! there is a kernel X¢(x,2') for each
1 < ¢ < L+1 so that for any fized point x € R™n | the random variable f*(x;600) is Gaussian with mean and variance
given as
E [fe(x; 90)} =0, Var [fé(x; 90)] = Eé(‘r?x)
Ntes
Moreover, for any finite collection of test points Xiest = (xglt, e ,x,EZ;;“)) the vector f*(Xjest; 00) = {fe(xtest, 90)} e
i=1
R™est js Gaussian with mean E [fz()(test; 00)] = 0 and covariance matriz

Cov [fe(Xtest; 90)] = Ez(Xtesta KXiest) = [Ef(xﬁe)gt,xglt)})

1,7=1

s

There is a recursive formula that gives ©¢ in terms 261 by
El(xa I/) 12/[/ €T, x > + Ub
S (x,2") = oy B [} + 03

o . 21 Se-L(a!
where Z, Z'are mean 0 Gaussians with covariance structure Cov (Z,Z') = { (@,) (2", z)

Zé—l(%m/) Zé—l(x/’x/)
2.2.3 The Neural Tangent Kernel

Theorem 22. There is a kernel ©(x,2’') known as the neural tangent kernel so that in the limit that the hidden
layer widths ny,...,ny, — oo we have
1. We have the convergence

Vof(x;00)" Vo f(a';00) = O(x,2")
and E [V f(x;00)" Vo f(z';60)] — O(z,2')

2. The limiting network satisfies the evolution:
d
S (w360, = —a®(w, X) (f(X:6) -)

whose solution is given by formulas similar to Theorem 6 in terms of the kernel ©, e.g. E [f(7;0s)] = O(z, X)O~H(X, X)).

3. There is a kernel ©° for each layer of the network; the kernel © is simply the output for the last layer is
simply © = ©LFL. The recursive formula giving the kernel ©° in terms of the previous layer ©°~! is as follows: Let
t(z,2') be the limiting covariance kernels of the neural network as in Proposition 21. Also define ¥¢(x,z') by a
similar recursion using the derivative $(z) = ‘Lo(x)

S(wa') = oW E [0(2) 9 (2)] + oF
¥(w,) = oy B [p(2) ¢ (2)]
where where Z, Z' are mean 0 Gaussians with covariance structure given by the old kernel X'~ (z,2"): Cov (Z,2') =

Yil(zz) TN) ’ ,
Sl) SN o) | The kernels ©° are defined by the recursion:

O'(z,a') = oy (z.2") + op
Sl (z,2") = oy (x,2") + o}
O (z,2') = 0 a, 22z, 2') + 2 (x, 2')

M More specifically we are doing the limits in order with n1 — oo first, then ny — co and so on.

13

2.3 Proofs

2.3.1 Proof of Neural Network Gaussian Process

Proposition 21 is proven with induction by showing that the Gaussian process property passes from each layer to
the next layer. We give this property a name, and then prove that it propagates through the layers.

Definition 23. We say that a random function f(z) ~ GP(m(z),2(z,z')) is a “Gaussian process” to mean that:
1. For each x € R, f(z) is Gaussian with mean and variance given by:

2. For any finite set Xyeqr = (xiiit, e ,x§:j;§“)

) the vector f(Xest) € R™test is a Gaussian vector with covariance

matrix

E [f(Xtest)] =m (Xtest)
Var [f(Xies)] = D Xiests Xrest) = [Safin 2ih)]

7,7=1

Proposition 24. [Propogation of the NNGP kernel] Let x € R™~. Suppose f°¢ : R"n — R"d js q random
function so that each of its components satisfy f?'%(z) ~ GP(0,5°(x,2’)) and the components f{'®,..., fo' are

independent. Define the random output function f7¢V : R™in — R"new py

new ow hid
)= W x))+op b
f () A/ Nold "new X'rLOZdSD (fhidx(l)) b"oldX1’

Suppose also that W is an Npew X Noig random matriz and b is a random vector of size nyq whose entries are iid
standard Gaussians. Then, in the limit np,q — oo, each component f1*(x) ~ GP(0,X""(x,x")) is a GP of mean
0 and covariance structure:

£ (,2/) = o3 B [(/@) ¢ (57)] + 03
= oWE[p(2)" 0(2)] + 0}

ZOld(l‘,x) ZOld(l‘/,x)

Dol (g, z') T (! 1) . Moreover,

where Z, Z'are mean 0 Gaussians with covariance structure Cov (Z,2Z') = [

the components ff'9, fj?ld are independent random functions for i # j.

Proof. Conditioned on the values of f°/4(x), the function each component ffew(m) is precisely a feature regres-
sion model with np;q features ¢(x) = ¢ (f’”d(:c)). Therefore, this is a Gaussian process with mean 0 and covariance

K(z,2') = % ()T (2") 402 = %g@ (fhid(x;ﬁ))Tgo (fhd(a’;0))+02. Now notice that —L—¢ (fOZd(:E))T ¢ (fol4(z"))

Nhid Nold
is actually a sum over n,;q random variables:

1 Nold

g (1 a:0)) T (£) = —— 3o (17@:0) 0 (£ 0))

Nold Nold i

By the assumption on f°'¢ these are independent random variables! So by the Law of Large Numbers ﬁ(p (f"ld(x; 0))T ® (f"ld(x’;
ZOld(JZ, .73) EOld(I/, l‘)
ZOld(x, I/) EOld(x/, x/)
sumption on the distribution of f°¢ ~ GP (O, E"ld(x,x')). Thus the kernel converges to the desired limit.'? The
independence of f{**and f7“* follows since f{** depends only on the i-th row of W, while f¢** depends only on the
j-th row of W, which are independent rows by the construction of W. O

E {ap(fld(m;G))Tgo({’ld(m;é‘))} = E[p(2)T¢(Z")] where Cov (Z,7') = [by the as-

I2Note that more work would be needed to make this convergence more precise; e.g. if the kernel converges is it clear that the whole
process is GP in the limit? We will skip this for now.

14

2.3.2 Proof of Neural Tangent Kernel

Proposition 25. [Propagation of the NTK kernel] Suppose ©°14 : Rn x R%n — R is a kernel, and fo'¢ : R™in x
Rmvar — R"I1d g a function. Suppose that for the initialization 03'¢, that fo'4(x;05'¢) ~ GP(0,%%%(z,2")) and
that components f1d(x;09'4), f;”d(:c; 03'4) are independent for i # j at initialization 0y. is a function such that its
gradient satisfies

VinOld(I; G(O)ld)TVfold(xl; egld) —_ @Old(x, :Z}/)
Vo 7 (2 05T Vo £ 051) = 0 if i #

Define now a new function f* : R™n x R"var € R™Y by

ow Id old
e (0" = — W o (f%(x;0 +op b
n,(l,eule) V Nold "mewXnold ("ol(d;l)) ”ncwX1’

where O™V = 9°'4 U {W} U {b} € R™ver are the old parameters with the weight matriz W € Rinewxneld qnd bias
vector b € R™"ew appended to them (3. Define the kernels X6V : R%in x R%n» — R gnd X"V : R%» x R%» — R
using the derivative $(x) = 2 o(x) by the formulas:

2 (a,0)) = o B 0 ()" 0 (2)] + of
S (x,a") = ofy B [9(2) ¢ (2)]
where where Z, Z'are mean 0 Gaussians with covariance structure given by the old kernel X°4(z,2"): Cov (Z,Z') =
EOld(ZE, LE) EOld(l‘/, 1,)

EOld(.T,Z‘/) ZOld(xl,l‘/)
satisfy

Then in the limit nyq — 00, we have that the gradients of the components V ¢V

venmu finew (.I, egew)TVQnew finew (J}/; egew) —y @new (l‘, l‘l)
Vgnew 7 (25 05°) TV gnew fiee(a’;05°) = 0 for i # j

where O : R™in x R™n — R is defined by
@new(m7x/> _ @old($7x/)2neu;($7m/) + Znew(x’ 3?/)

Proof. First consider that the gradient product can be split into a sum of two parts, one part with only the “new”
parameters W, b, and one part with only the “old” parameters §°'¢

V@new finew ((17, enew)Tvenew f]’(tew (’JJ/; enew) _ V{W,b} finew (:17’ gnew)Tv{W7b}f;zew (213/; 0new)+veold finew (I’, onew)Tveoldf]new (IL'/; grew
(17)
we will show that the first term goes to ©°(z,z")X°!%(x, 2’) and the second term goes to X°%(x, 2') when i = j,
and that they both go to zero if i # j.
The first term of 17 is the same argument as the previous proposition for the the NNGP, since the W, b derivatives
are precisely the things from the NNGP kernel argument:

o T
V{W,b}finew (il?; enew)Tv{Wyb}f;zew(x/; enew) _ 7W(P (fOld((E; 00ld>) © (fOld((E/; aold)) =+ 0,13

Nold IXng1q nold X1
o o T o o
— o E [@ (F';0°) " o (f(a';0 ld))} +op
— Enew<x’x/)

which converges as before. When i # j, notice that V) f7'° (w; G”EW)TV{Wyb}f}Lew(x’; fme*) = 0 since the only

terms that are non-zero in the vector Vy,py f7*" (; 6me)T are the partial derivatives terms with an i:ﬁ and %,

while the only non-zero terms in the vector V gy) f7<* (2'; 0"") are the partial derivative terms with a j: and

p)
oW,
%. Hence this inner product is 0.

J

13This means that the number of new parameters is Npar = Npar + (Mnew + 1Nola

15

For the second term of 17, we will compute by chain rule, which is where the ¢(x) will appear! Consider

ow ld old\\ T
Vgota fV (x; 0™ T = W Vgorap (fo1%x; 0°4)
”newxn';ar V Nold mnew Xnora Soldx'”’}m”f')

ow

_ W diag [90/ (fold(x; ohid))] (Vgozdf"ld(a:; eold)T>

A/ Mold "new Xng1q Nold X Mol Nold XNpar

Here diag [(p’ (fOZd(x; Ghid))] is the no1q X Morq matrix which has the elements from the size n,;4 vector ¢’ (fOId(x; phid)

on it'"* From this structure, we see the two terms that will give rise to the two terms in the limit we want %7¢% (x,2")
and ©°“(x, 2'). To see this consider that:

veoldfinew(x; enew)Tveoldenew (37/; Gnew>

2
_ Tw W dlag [(P/ (f()ld(l'; ahid)):l (vaoldfold(m; Gold)Tveoldfold(x/; 90ld)> <d1ag [90/ (fOld({L'/; 9hid))]> W]T

Nold 1xng1q Nord X old no1d X Npar NparXnyld

Told XTold Told X1

2

_w W, diag [¢/ (fold(x; ehid))]diag [@"ld(a:,x’)]diag [’ (fold(x/; ehid))] WJT

Nold 1x Nold

Told X Mold Told X Mold Told X Mold norg X1
2 Mold

:Zml/d Z Wi (old(y. ehid)) 0% (z, z')y’ (fgld(x/; Hhid)) W,
O k=1

2 MNold
=%l (g, 2" w Z Wire' (old (. ehid)) o (fgld(x/; Hhid)) W,
k=1

Nold _

as before, this is a sum of n,g independent variables! In the limit n,q — oo this converges to its mean by the law
of large numbers:

> O 02! Yo B (W Wi (F(:0)) o (F(a':6)]
B Q% (g, 2)XW (g, 2') ifi=j
1o if i j

by the definition of ¥"¢¥ (z, 2”) O

3 References

T’'ve cited the arXiv versions since these are more recently updated and include all the appendices with proofs.
[RWO06] great reference for the regression model
[MM19, HMRT19] analysis of the random features regression model
[LXS*19, COB20] contains discussion about the linearized model and the comparison f ~ f!i"
[MRH" 18, LBN'17] show the Gaussian process behaiviour and the kernel 3
[JGH18| orginal paper with the NTK kernel ©

References

[COB20] Lenaic Chizat, Edouard Oyallon, and Francis Bach, On Lazy Training in Differentiable Programming,
arXiv:1812.07956 [cs, math] (2020), arXiv: 1812.07956.

[HMRT19] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani, Surprises in High-
Dimensional Ridgeless Least Squares Interpolation, arXiv:1903.08560 [cs, math, stat] (2019) (en).

[JGH18] Arthur Jacot, Franck Gabriel, and Clément Hongler, Neural Tangent Kernel: Convergence and General-
ization in Neural Networks, arXiv:1806.07572 [cs, math, stat] (2018) (en).

[LBNT17] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S. Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein, Deep Neural Networks as Gaussian Processes, arXiv:1711.00165 [cs, stat] (2017) (en).

14This arises because we are thinking of the function ¢ : R — R as being a function ¢ : R™old — R™old by applying it entrywise.
Because of the way of extending the map from R to R™otd, when you take the Jacobian matrix of this map, you get a diagonal matrix.

16

[LXS*19] Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein,
and Jeffrey Pennington, Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient
Descent, arXiv:1902.06720 [cs, stat] (2019), arXiv: 1902.06720.

[MM19] Song Mei and Andrea Montanari, The generalization error of random features regression: Precise asymp-
totics and double descent curve, arXiv:1908.05355 [math, stat] (2019) (en).

[MRHT18] Alexander G. de G. Matthews, Mark Rowland, Jiri Hron, Richard E. Turner, and Zoubin Ghahramani,
Gaussian Process Behaviour in Wide Deep Neural Networks, arXiv:1804.11271 (2018) (en).

[RW06] Carl Edward Rasmussen and Christopher K. I. Williams, Gaussian processes for machine learning, Adap-
tive computation and machine learning, MIT Press, Cambridge, Mass, 2006 (en), OCLC: ocm61285753.

17

