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1 Feature Regression and the Random Feature Model

Notation Space object lives in De�nition

nex N nex = Number of examples
nin N nin = Input dimension
npar N npar = Number of parameters,

x(i), y(i) Rnin × R1 x(i), y(i) = ithtraining example for 1 ≤ i ≤ nex
(Note: The output dimension here is y(i) ∈ R1 but this can be generalized
to Rnout without much trouble. I am keeping it R1 to keep things a bit

easier to understand)
X ,Y (Rnin)

nex × Rnex Notation used for all the training examples together

X ,Y =
(
x(i), y(i)

)nex

i=1

x Rnin Generic point in the input space Rnin

θ Rnpar Vector of all the parameters of the model (e.g. all the weights and biases
together)

θt Rnpar Parameters at time t along some sequence of parameters (e.g. how
parameters evolve under gradient descent)

f(x; θ) f : Rnin × Rnpar → R Model function at generic input x and parameters θ (e.g. a regression
model or a neural network)

∇θf(x; θ) ∇θf : Rnin × Rnpar →
Rnpar

Gradient of the model w.r.t the parameters thought of as a vector in
Rnpar , (∇θf)i (x; θ) = ∂f

∂θi
(x; θ) for 1 ≤ i ≤ npar

f(X ; θ) f(X ; ·) : Rnpar → Rnex Stacked vector of the output for all the examples

f(X ; θ) =

 f(x(1); θ)
...

f(x(nex); θ)

 ∈ Rnex

K(x, x′) K : Rnin × Rnin → R A �kernel�. Can be thought of a generalization of a dot product
K(x, x′) = 〈x, x′〉

K(X ,X ) Rnex × Rnex The matrix you get by applying the K(·, ·) to all the input examples from
X K (X ,X ) =

[
K
(
x(i), x(j)

)]nex

i,j=1
∈ Rnex × Rnex

φ(x) φ : Rnin → Rnpar Feature map with npar features in itφ(x) =
(
φ1(x), . . . , φnpar (x)

)
∈ Rnpar

φ(X ) Rnpar × Rnex Feature map applied to the training examples

φ(X ) =

 φ(x(1))
...

φ
(
x(nex)

)
 ∈ Rnpar × Rnex

N (µ,Σ) Rdim(µ) Notation for a Gaussian random vector with mean µ ∈ Rdim(µ) and
covariance matrix Σ ∈ Rdim(µ)×dim(µ)

Other things, I sometimes write the sizes of the matrices during matrix multiplication to make sure it all works
out! e.g.

A
n×m

= B
n×p

C
p×m

means that A is an n×m matrix, B is an n× p matrix, and C is a p×m matrix.

1.1 De�nition of the model and main results

De�nition 1. [Feature regression model with Gaussian initialization] As is typical in supervised learning , suppose
we are given a list of nex input examples x(i) ∈ Rin and the corresponding outputs examples y(i) ∈ R1 for 1 ≤ i ≤ nex.1
Our goal is to �nd a function f : Rin → R1 that �ts these given examples well and hopefully generalizes to other
unseen test points x ∈ Rnin ,y ∈ R1 from the data distribution.

One way to do this is the following 2 step procedure:

1In the discussion here, the output space can be generalized to y ∈ Rnout for some nout ∈ N without any signi�cant changes. We are
using the output dimension nout = 1 here for simplicity.
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Step 1. Choose npar feature maps φi : Rin → R for 1 ≤ i ≤ npar that capture di�erent features of the inputs
x ∈ Rin. This creates a feature vector φ(x) ∈ Rnpar for each input x ∈ Rnin .

Step 2a. Set up the linear regression with npar coe�cients using the features from Step 1. This is the
parameterized model f : Rnin × Rnpar → R given by:

f(x; θ) =
1

√
npar

θTφ(x)
1×npar npar×1

=
1

√
npar

npar∑
i=1

θiφi(x) (1)

Step 2b. Initialize the coe�cients to be a Gaussian random vector with independent standard mean zero
entries of variance 1: i.e. start θ0 to be the random vector θ0 ∼ N (0, Inpar ). Then optimize the parameters θ by
gradient descent on the loss function2

L(θ) =
1

2
‖f(X ; θ)− Y‖2 =

1

2

nex∑
i=1

(
f(x(i); θ)− y(i)

)2
For the theoretical discussion here, we will consider updating the parameters {θt}t∈R+ with t being a continuous

time parameter evolving according to the gradient �ow di�erential equation3

d

dt
θt = −α∇θL(θt) (2)

Remark 2. The choice of the normalization constant 1√
npar

ensures that even if npar grows large, the function f(x; θ)

does not grow larger and larger. For example, since the θi are initialized to independent Gaussian random vectors,
the f(x; θ0) is a Gaussian too with variance Var [f(x; θ)] = 1

npar
φ(x)Tφ(x) = 1

npar

∑npar

i=1 φ2i (x) is proportional to the

average value of φi(x)2 over all features 1 ≤ i ≤ npar. Without the normalization constant in front, this variance
would tend to in�nity as we add more and more features.

Example 3. Depending on the feature maps φ that are chosen, this model may be very simple or more complicated.

• If npar = nin and φ(x) = x is the identity, than this model is the classic linear regression model.

• If nin = 1 and φ contains the monomials φ(x) =
[
1, x, x2, . . . , xnpar−1

]
then this model is just polynomial

regression.

• A model that has received some attention recently is the random features model where we set φi(x) = wi ·x
for some independent random variables wi ∈ Rnin , 1 ≤ i ≤ npar

• One can set φ(x) to be the output of a pretrained neural network for a related task. For example, if you are
doing image recognition, and have already trained φ(x) from a large datatset, you can now do this regression
model to train a model that works on a new dataset more quickly.

Problem 4. Is there a way to analyze the resulting function we get if we run gradient �ow long enough? i.e. Can
we understand the limiting function

f(x; θ∞) := lim
t→∞

f(x; θt).

Some things we would like to know:

• Can we say anything about how the model generalizes on unseen data x?

• How does the choice of function φ e�ect the �nal output?

2This loss function uses all the given examples so it sometimes called �full batch gradient descent�. In practice, one often uses a subset
of the examples rather than all of them.

3In practice, it is more common to see the discrete time t ∈ N gradient descent update rule θt+1 = θt− η∇θL(θt) rather than gradient
�ow. It is not di�cult to show that under mild assumptions that if the learning rate η is small enough then discrete time gradient
descent and continuous time gradient �ow are almost the same. We will stick to gradient �ow as the continous time nature of it makes
the calculus easier!
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Solution 5. Yes we can! It turns out that this model has an analytical solution can be written entirely in terms of
the kernel K : Rin × Rin → R given by the scaled dot product of the features:

K(x, x′) =
1

npar
φ(x)Tφ(x′)
1×npar npar×1

=
1

npar

npar∑
i=1

φi(x)φi(x
′) (3)

This kernel can be thought of as a generalization of the inner product x · x′and it depends only on the feature
maps φ that were chosen in Step 1. The given nex examples X =

(
x(1), . . . , x(nex)

)
can be fed into the kernel to get

an nex × nex matrix K(X ,X ):

K(X ,X ) =
1

npar
φ(X )Tφ(X )

nex×npar npar×nex

=
[
K(x(i), x(j))

]nex

i,j=1
(4)

It turns out that as long as this matrix is invertible4, then many questions about the limit f(x, θ∞) can nicely

be written in terms of the inverse K−1(X ,X ) := (K(X ,X ))
−1
.

Theorem 6. [Training dynamics of the model] Let K(x, x′) = 1
npar

φ(x)Tφ(x′) be the kernel from (3) and let K(X ,X )

be the nex × nex matrix from (4). Because the gradient of the model ∇θf(x; θ)T∇θf(x′; θ) = K(x, x′) does not

depend on θ the following happens, For an arbitrary test point x ∈ Rnin , the evolution of f(x; θt) can be written in
term of the kernelK(·, ·), and the training data X ,Y as

d

dt
f(x; θt) = αK(x,X )

1×nex

(Y − f(X ; θt))
nex×1

where K(x,X ) is the row vector K(x,X )
1×nex

= 1
npar

φ(x)T
1×npar

φ(X )
npar×nex

=
[
K(x, x(i))

]nex

i=1
∈ R1×nex .

Suppose in addition that the matrix K(X ,X ) is invertible. Then the training data will be perfectly �t with zero
training error:

f (X ; θ∞) = Y

and moreover we can explicitly solve to get the solution at any test point x as5

f(x; θ∞)− f(x; θ0) = K(x,X )
1×nex

K−1(X ,X )
nex×nex

(Y − f(X ; θ0))
nex×1

θ∞ − θ0 =
1

√
npar

φ(X )K−1(X ,X ) (Y − f(X ; θ0))

Proposition 7. [Initial distribution of the model] Recall that the initial parameters θ0 are independent Gaussian
with θ0 ∼ N (0, σInpar ). For any �xed point x ∈ Rnin , the random variable f(x; θ0) is Gaussian with mean and
variance given as follows

E [f(x; θ0)] = 0, Var [f(x; θ0)] = K(x, x)

Moreover, for any �nite collection of test points Xtest =
(
x
(1)
test, . . . , x

(ntest)
test

)
, the vector f(Xtest; θ0) =

[
f(x

(i)
test; θ0)

]ntest

i=1
∈

Rntest is Gaussian with mean E [f(Xtest; θ0)] = 0 and covariance matrix

Cov [f(Xtest; θ0)] = K(Xtest,Xtest) =
[
K(x

(i)
test, x

(j)
test)

]ntest

i,j=1

Remark 8. Sometimes people say �f(x; θ0) is a Gaussian process of mean 0 and kernel K(x, x′)� or write f(x; θ0) ∼
GP (0,K(x, x′)) to mean exactly the statement of Proposition 17. This just means that any �nite collection of points
gives a Gaussian vector with covariance matrix given by the kernel K.

Combining Proposition 7 and Theorem 6 gives us the distribution after training.

4Note that K(X ,X ) = φ(X )Tφ(X ) is invertible if and only if the nex feature vectors φ(x(1)), . . . , φ(x(nex)) are an independent set of
vectors in the space Rnpar . This can only happen in the overparametrized regime where npar ≥ nin. This is the regime we will focus on
here!

5A similar formula exists for intermediate times f(x; θt).
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Theorem 9. For any test point x ∈ Rnin , f(x; θ∞) is a Gaussian random variable with mean and variance given by

E [f(x; θ∞)] = K(x,X )
1×nex

K−1(X ,X )
nex×nex

Y
nex×1

(5)

Var [f(x; θ∞)] = K(x, x)−K(x,X )
1×nex

K−1(X ,X )
nex×nex

K(X , x)
nex×1

Moreover, for any set of test points Xtest =
(
x
(1)
test, . . . , x

(ntest)
test

)
the joint distribution of the vector f(Xtest; θ∞) is

also Gaussian with mean and covariance given by formulas similar to (5). Similar explicit formulas can be given for
f(x; θt) at any intermediate time 0 < t <∞. The random variable f(x; θ∞) has the following equivalent interpretation
as a conditional probability: f(x; θ∞) is equal in distribution to f(x; θ0) conditioned on the event f(X ; θ0) = Y, i.e.

P (f(x; θ∞) ∈ A) = P (f(x; θ0) ∈ A |f(X ; θ0) = Y ) ∀A ⊂ R,

In the next few sections I will show the proofs, which are not too di�cult. First some remarks!

1.2 Random Feature Regression

1.2.1 Random Feature Model

De�nition 10. [Random feature model] One interesting choice of features φ is to choose them randomly. For
example, if we �x a non-linearity ϕ : R→ R, one can make the featuresφi independent random functions by setting

φi(x) = ϕ (〈yi, x〉)

where yi ∈ Rnin are independently randomly chosen vectors and ϕ : R → R is some �xed non-linearity function.
Note that in this case the kernel K is given by:

K(x, x′) =
1

npar

npar∑
i=1

ϕ (〈yi, x〉)ϕ (〈yi, x′〉)

Since the various yi are independent, we are looking at an average of independent random variables! By the law of
large numbers,

K(x, x′) ≈ EY [ϕ (〈Y, x〉)ϕ (〈Y, x′〉)]
and this approximation will improve as npar →∞.

1.2.2 �Train-Only-the-Last-Layer� Neural Network

Another example of a random feature model is to train a neural network where ONLY the weights on the last layer
are updated through training, and the weights on the �rst part of the network remain frozen to their values of
initialization. Imagine a network with hidden layer widths n1, . . . , nL−1 and non-linearity ϕ. The output of the
network can be written as a simple function of the last hidden layer fL−1:

f(x;W, b) =
σW√
n`
Wϕ

(
fL−1(x; θhid0 )

)
+ σbb

, where the non-linearity ϕ is applied entry-wise. The trainable parameters of the model are the weightsW and bias b
of the last layer, while the output of the previous layer fL−1(x; θhid0 ) is always �xed to whatever it is at initialization.
This is precisely a random feature model with features given by the components of fL−1(x;ω0). The relevant kernel
is:

K(x, x′) = ∇{W,b}fL(x;W, b)T∇{W,b}fL(x;W, b) =
σ2
W

n`
ϕ
(
fL−1(x;ω0)

)T
ϕ
(
fL−1(x′;ω0)

)
+ σ2

b

and in the limit that the size of the last hiddne layer nL−1 →∞ tends to in�nitiy, we will again have by the law of
large numbers the convergence:

K(x, x′) ≈ σ2
WEθhid

0

[
ϕ
(
fL−1(x; θhid0 )

)T
ϕ
(
fL−1(x′; θhid0 )

)]
+ σ2

b

So this model can be understood only through understanding this kernel! We will compute what this is in the next
section on neural networks.

The more interesting case is the full network case where ALL the layers are trained. You can think of this as a
random feature model where we train the features as we go!
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1.2.3 Double Descent Curve

In simple example cases, by using probability theory to theoretically compute K, we can investigate how the model
performance depends on npar. Imagine the case where the training data is given as y(i) =

〈
β, x(i)

〉
for an unknown

vector β. Then train the model using random features with ϕ(x) = max{x, 0}, the ReLU nonlinearity. Here is a plot

where they plot the test error for an unseen point E(x,y)∼µ

[
(E [f(x; θ∞)]− y)

2
]
on the y-axis vs the ratio nex

npar
on the

x-axis (They compute the error in the limit that both nex, npar, nin all grow to in�nity with the ratio being �xed.)
The left plot is exactly the model we discussed (no regularization) while the right plot has a regularization term

proportional to ‖θ‖2 added to the loss function. Both plots are an example of the double descent phenomenon
where the test error �rst goes down, then goes up, and then goes down again. This kind of phenomenon shows that
in the extremely overparameterized case, the performance of the model can actually be very good. Unlike other
statistical models, it seems that over�tting does not seem to be a big issue with these models. [MM19, HMRT19]
have analysis of the random features regression model in this high dimensional setting. Here is a beautiful �gure
from [MM19]showing the double descent curve.

1.3 Remarks and Extensions

1.3.1 The Kernel Trick

Remark 11. Note that the results depends only on the kernel K(·, ·), but not actually on the features φ(·) themselves.
This means that there is an alternate method to do the regression that replaces the step of choosing feature vectors φ
with only choosing a kernel K(·, ·). This kind of technique of working only with an abstract K and forgetting about
where it came from is sometimes called �the kernel trick�. Here is what that means in our setting:

Step 1: Choose a kernel function K : Rnin × Rnin → R 6

Step 2: For a given training set X ,Y, de�ne the estimator f̂(x) = E [f(x; θ∞)] from 5, which is given in terms
of K(·, ·) only

This has the potential to be advantageous because it avoids dealing with the high dimension npar and everything
is now instead in the �low� dimensions nex and nin. In the same vein, we have replaced the task of choosing npar
features φi : Rnin → R with choosing a single kernel function K : Rnin × Rnin → R. Note that you still have to
store and invert the matrix K(X ,X ) which might have other types of issues. Depending on the application and
implementation, it might be better to compute only with K(·, ·) or by using the original features.

6There are some terms and conditions that the kernel K must satisfy to guarantee everything will work like K(x, x′) = K(x′, x),
K(x, x) ≥ 0. Essentially, K(x, x′) must satisfy all the axioms to make K(x, x′) a valid inner product. There is a theoretical result, known
as Mercer's theorem, which says that every kernel K that satis�es these reasonable conditions actually arises as K(x, x′) = φ(x)Tφ(x′)
for some (possibly complicated) set of features φ. I won't go into the details here!
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Remark 12. Even if one doesn't carry out the computation using K(·, ·), the explicit formulas from Theorem6 can be
extremely useful for theoretical analysis. For example, we can measure how well the method over�ts by examinging
f(x; θ∞) for points x outside the training set. As a concrete setup, one can suppose that X ,Y are drawn independently

from some distribution µ, and then the generalization error E(x,y)∼µ

[
(E [f(x; θ∞)]− y)

2
]
measures the average loss

of the network to a test point outside of X ,Y. In some cases the formulas from Theorem 6 can be used to explicitly
calculate this and understand generalization error.

Remark 13. There is also an equivalent Bayesian point of view on this where training the model is thought of as a
Bayesian update of the weights according to the information given by X ,Y. I won't go into this here. You can �nd
some of this in the book Gaussian Processes for Machine Learning by Rasmussen & Williams.

1.3.2 Extensions - Weights/Biases and Multi-dimensional output

Remark 14. One can also consider a model of which includes weights and biases so the model is now

f(x; θ) =
σW√
nW

WTφ (x) + σbb

where now θ = {W}∪{b} includes all the weights and biases together, and where the initialization is nowW ∼ N (0, 1)
and b ∼ N (0, 1) are still independent standard Gaussians. This �ts into the previous setup by scaling the features
by σW making one of the features a constant σb. The kernel in this case becomes:

K(x, x′) = ∇θf(x; θ)T∇θf(x; θ) = E [f(x; θ0)f(x′; θ0)] =
σ2
W

nfeat
φ(x)Tφ(x′) + σ2

b

Note that for everything to work out without any other changes, its important that the parameters are always
initialized to standard Gaussians N (0, 1), and the scaling by σW , σb is put in the de�nition of the function f(x; θ)
(as opposed to having W ∼ N (0, σ2

W ) and b ∼ N (0, σ2
b ) and omitting the constants σW , σb from the de�nition of

f(x; θ)). The reason this is important is because there are two parallel parts of the puzzle. One part is about
the gradient ∇θf(x; θ)T∇θf(x; θ), and the other part is about the covariance E [f(x; θ0)f(x′; θ0)]. We want these
two di�erent pieces to gel together, which means we must always have the weights be N (0, 1); changing the variance
to something else scales the covariance term but not the gradient term.

Remark 15. One can also consider the output dimension to be a general nout, rather than just 1 dimensional. In
this case one needs to think of the kernel K(x, x′) = φT (x)φ(x′) as as a map K : Rnin × Rnin → Rnout × Rnout 7.
Equally well, you can look at the individual components of the model f(x; θ) = [f1(x; θ), . . . , fnout

(x; θ)]T and set:

Kij(x, x
′) = ∇θfi(x; θ)T∇θfj(x′; θ)

= E [fi(x; θ)fj(x
′; θ)]

For the application that we are going to look at it will turn out that the only elements which will be non-zero are
going to be the diagonal elements Kii. For this reason I'm always going to stick to thinking of kernels as being
R-valued and I'll use components. Note that some authors think of these things as being matrix valued with is why
they sometimes have formulas involving the tensor product ⊗ in their formulas; I'm going to avoid this notation.

1.4 Proofs

1.4.1 Gradient Descent Dynamics - Proof of Theorem 6 Part 1

The �rst observation is to calculate the gradient ∇θf(x; θ) for this model using the de�nition (1). In this case, this
is8

∇θf(x; θ) =
1

√
npar

φ(x)
npar×1

(6)

7You can see this from the formula K(x, x′) = φ(x)T
nout×nex

φ(x)
nex×nout

8Note that I'm doing all the calculation as vectors/with matrix multiplication because the �nal answer can be cleanly written that
way. It is a good exercise (and often how I actually did the computation!) to do it all explicitly in coordinates. E.g. write out
f(x; θ) =

∑npar

i=1 θiφi(x) so you can directly verify ∂
∂θi

f(x; θ) = φi(x)

7



The miracle here is that the gradient does not depend on θ at all! This is the key feature that will eventually
allow us to solve the model. The gradient �ow dynamics can then be written using chain rule as:

d

dt
θt = −α∇θL(θt)

npar×1

(7)

= −α∇θf(X ; θ)
npar×nex

(f(X ; θt)− Y)
nex×1

= − α
√
npar

φ(X )
npar×nex

(f(X ; θt)− Y)
nex×1

It is not clear how to solve this di�erential equation as the evolution of θt depends on the values f(X ; θt), which
we don't know because we need to solve for θt! The trick to solving this is to look directly at how the function
f(x; θt) evolves and solve for that �rst without directly solving for the parameters θt. We can compute as follows by
chain rule again and plugging in (6) and (7) to get

d

dt
f(x; θt) = ∇θf(x; θt)

T

1×npar

d

dt
θt

npar×1

= − α

npar
φ(x)T

1×npar

φ(X )
npar×nex

(f(X ; θt)− Y)
nex×1

(8)

= −αK(x,X )(f(X ; θt)− Y)
nex×1

(9)

1.4.2 Solution to Dynamics - Proof of Theorem 6 Part 2

The nice formula for d

dtf(x; θt) is solveable to give the exact formula during training. As it is written now the
evolution of f(x; θt) depends on f(X ; θt). To �close the loop� and make this into something we can solve, we are
going to plug in the training examples we have x = x(1), . . . , x = x(nex). You can think of doing this one at a time
and stacking up the result into a big vector. In vector form this can be written succinctly in terms of the vector
f (X ; θt) which is the vector with f(x(1); θt) . . . , f(x(nex); θt) to get

d

dt
f(X ; θt)

nex×1

= − α

npar
φ(X )T

nex×npar

φ(X )
npar×nex

(f(X ; θt)− Y)
nex×1

= −αK(X ,X )
nex×nex

(f(X ; θt)− Y)
nex×1

where we recall the matrix K(X ,X ) = 1
npar

φ(X )Tφ(X ) =
[
K(x(i), x(j))

]nex

i,j=1
. Finally, our di�erential is a closed

system where the evolution of the vector f(X ; θt) depends on f(X ; θt) itself. Because the matrix K(X ,X ) is constant
and doesn't depend on t, this type of equation is easily solved. To make the solution more transparent, let us do the
substitution vt = f(X ; θt)− Y. Notice that d

dtf(X ; θt) = d

dtvt. So the di�erential equation for vt is simply

d

dt
vt = −αK(X ,X )vt

which is just a constant coe�cient vector di�erential equation9. This has solution given by the matrix exponential

vt = e−αtK(X ,X )v0

Substituting vt back now gives the solution for f(X ; θt)

f(X ; θt) = Y + e−αtK(X ,X ) (f (X ; θ0)− Y) (10)

Right away we can notice that as long as K(X ,X ) is not degenerate, then limt→∞ e−αtK(X ,X ) = 0 and so
limt→∞ f(X ; θt) = Y, or in other words that our training data is �t perfectly.

We can �nally plug the solution (10) into the evolution of f(x; θt) from (8) to get

d

dt
f(x; θt) = −αK(x,X )e−αtK(X ,X ) (f (X ; θ0)− Y)

9This di�erential equation is the vector/matrix version of the scalar di�erential equation y′ = −αy which has solution y(t) = e−αty(0)
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where K(x,X ) = 1√
npar

φ(x)Tφ(X ). This gives d

dtf(x; θt) explicitly so we only have to integrate with respect to

t to solve10 to get

f(x; θt) = f(x; θ0) +K(x,X )K−1(X ,X )
(
e−αtK(X ,X ) − I

)
(f (X ; θ0)− Y) (11)

We can now easily compute the limit assuming that K(X ,X ) is non-degenerate so that limt→∞ e−αtK(X ,X ) = 0

f(x; θ∞) = lim
t→∞

f(x; θt) (12)

= f(x; θ0)−K(x,X )K−1(X ,X ) (f (X ; θ0)− Y)

This gives the �nal solution f(x; θ∞) explicitly in terms of the initialization f(x; θ0).
Note that we can get an explicit solution for θt in the same way by plugging in the solution f(X ; θt) into the

di�erential (7) to get the solution

d

dt
θt = −α 1

√
npar

φ(X )e−αtK(X ,X ) (f (X ; θ0)− Y)

=⇒ θt − θ0 =
1

√
npar

φ(X )K−1(X ,X )
(
e−αtK(X ,X ) − I

)
(f (X ; θ0)− Y) (13)

=⇒ θ∞ − θ0 =
1

√
npar

φ(X )K−1(X ,X ) (Y − f(X ; θ0))

Note that the amount any individual weights change scales like O
(

1√
npar

)
: this means that as we have more

and more features, the amount each parameters need to change during training shrinks. Note also by computing
(θ∞ − θ0)

T
(θ∞ − θ0) using 13 we get that:

‖θ∞ − θ0‖2
1×1

= (Y − f(X ; θ0))
T

1×nex

K−1(X ,X )
nex×nex

(Y − f(X ; θ0))
nex×1

meaning that the total norm of the change stays O(1) even as the number of parameters grows.

1.4.3 Distribution at initialization - Proof of Proposition 7

The key to part 3 is to notice that f(x; θ0) is a mean zero Gaussian θ0 which is simply multiplied by the features
φ(x). Gaussian are preserved under this type of multiplication.

Fact 16. If X is Gaussian random variable X ∼ N (µX ,ΣX) and if Y = a + BX then Y is Gaussian too with
Y ∼ N (a+BµX , BΣXB

T )

Proposition 17. Recall that the initial parameters θ0 are independent Gaussian with θ0 ∼ N (0, σInpar ). For any
�xed point x ∈ Rnin , the random variable f(x; θ0) is Gaussian with mean and variance given as follows

E [f(x; θ0)] = 0, Var [f(x; θ0)] = K(x, x)

Moreover, for any �nite collection of test points Xtest =
(
x
(1)
test, . . . , x

(ntest)
test

)
, the vector f(Xtest; θ0) =

[
f(x

(i)
test; θ0)

]ntest

i=1
∈

Rntest is Gaussian with mean E [f(Xtest; θ0)] = 0 and covariance matrix

Cov [f(Xtest; θ0)] = K(Xtest,Xtest) =
[
K(x

(i)
test, x

(j)
test)

]ntest

i,j=1

Proof. This follows directly from Fact 16 since θ0 ∼ N (0, σInpar ) and f(x; θ0) = 1√
npar

φ(x)T θ0 is a linear transfor-

mation of θ0. Note that the variance of f(x; θ0) arises from K(x, x) = 1
npar

φ(x)Tφ(x). Similarly, f(Xtest; θ0) =
1√
npar

φ(Xtest)T θ0 is also linear transformation of the original weights. In this case the covariance matrix for

φ(Xtest)T θ0 is now given by σ
npar

φ(Xtest)Tφ(Xtest) = K(Xtest,Xtest) as desired.
10Once again, the vector/matrix integration we are doing looks slightly complicated, but it is the analog of the scalar integration

y′ = eCt =⇒ y(t) = 1
C

(
eCt − 1

)
+ y(0)
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1.4.4 Distribution after training - Proof of Theorem 9 Part 1

Proof. Since f(x; θ∞) is an explicit linear transformation of f(x; θ0) this will be Gaussian too, and we can compute
its mean and covariance. The calculation that E [f(x; θ∞)] = K(x,X )K−1(X ,X )Y follows immediately by taking
expectation of both side of 12 since E [f(x, θ0)] = 0 and E [f (X ; θ0)] = 0. Theorem 9 now follows by considering the
test set of points {x} ∪ X which consists of a single test point x and the training data X . By Proposition 17, this
vector can be understood as a mean zero Gaussian vector whose covariance has a nice block structure:

E

([
f(x; θ0)
f(X ; θ0)

])
= 0 Cov

([
f(x; θ0)
f(X ; θ0)

])
=

 K(x, x)
1×1

K(x,X )
1×nex

K(X , x)
nex×1

K(X ,X )
nex×nex

 (14)

Now the result of Part 1 and Part 2 of Theorem 6 (e.g. 12) can be interpreted as giving the vector

[
f(x; θ∞)
f(X ; θ∞)

]
as a linear transformation

[
f(x; θ0)
f(X ; θ0)

]
which is nicely written in block matrix form as follows:

[
f(x; θ∞)
f(X ; θ∞)

]
=

 1
1×1

−K(x,X )
1×nex

K−1(X ,X )
nex×nex

0
nex×1

0
nex×nex

[ f(x; θ0)
f(X ; θ0)

]
+

 K(x,X )
1×nex

K−1(X ,X )
nex×nex

Y
nex×1

0
nex×1

 (15)

Hence by Fact 16, we can compute the mean and covariance of

[
f(x; θ∞)
f(X ; θ∞)

]
from the mean and covariance of[

f(x; θ0)
f(X ; θ0)

]
given in 14 as follows:

E

([
f(x; θ∞)
f(X ; θ∞)

])
=

[
K(x,X )

1×nex

K−1(X ,X )
nex×nex

Y
nex×1

Y

]

Cov

([
f(x; θ∞)
f(X ; θ∞)

])
=

 1
1×1

−K(x,X )
1×nex

K−1(X ,X )
nex×nex

0
nex×1

0
nex×nex

 K(x, x)
1×1

K(x,X )
1×nex

K(X , x)
nex×1

K(X ,X )
nex×nex

 1
1×1

0
1×nex

−K−1(X ,X )
nex×nex

K(X , x)
nex×1

0
nex×nex


=

 1
1×1

−K(x,X )
1×nex

K−1(X ,X )
nex×nex

0
nex×1

0
nex×nex

 K(x, x)
1×1

−K(x,X )
1×nex

K−1(X ,X )
nex×nex

K(X , x)
nex×1

0
1×nex

0
nex×1

0
nex×nex


=

 K(x, x)
1×1

−K(x,X )
1×nex

K−1(X ,X )
nex×nex

K(X , x)
nex×1

0
1×nex

0
nex×1

0
nex×nex


(Note that its not a surprise that the covariance matrix blocks involving f(X ; θ∞) are zero as because we know

that f(X ; θ∞) = Y exactly so it has no variance at all!) From this we can read o� the variance of f(x; θ∞) =
K(x, x)−K(x,X )K−1(X ,X )K(X , x) from the top-left block. The same technique works to compute the covariance
matrix for any arbitrary test set XT or for f(x; θt) at any arbitrary time 0 < t <∞ using (11).

1.4.5 Conditioning Gaussian Vectors - Proof of Theorem 9 Part 2

Finally, the result about conditioning follows from another standard fact about conditional Gaussian distributions.
The mean and covariance of our �nal model f(x; θ∞) happens to be precisely that of the conditional Gaussian
distribution. The mean and variance of the conditional Gaussian model comes from the following calculation:

Fact 18. Let n1 and n2 be integers, and consider the Gaussian vector of dimension n1 +n2, X =

[
X1

X2

]
∈ Rn1+n2 ,

where X1 ∈ Rn1 and X2 ∈ Rn2 which has means

E [X] = µ =

[
E [X1]
E [X2]

]
=

[
µ1

µ2

]
with µ ∈ Rn1+n2 and µ1 ∈ Rn1 , µ2 ∈ Rn2 , and (n1 + n2)× (n1 + n2) covariance matrix Σ which we decompose into
blocks

Cov [X] = Σ
(n1+n2)×(n1+n2)

=

 Σ11
n1×n1

Σ12
n1×n2

Σ21
n2×n1

Σ22
n2×n2


10



Then, for any �xed vector x ∈ Rn2 , conditioned on the event {X2 = x}, the conditional distribution of X1 ∈ Rn1

is a Gaussian with mean and covariance structure given by:

E [X1 |X2 = x ] = µ1
n1×1

+ Σ12
n1×n2

Σ−122
n2×n2

(x− µ2)
n2×1

Cov [X1 |X2 = x ] = Σ11
n1×1

− Σ12
n1×n2

Σ−122
n2×n2

Σ21
n2×n1

2 Neural Net Gaussian Processes and the Neural Tangent Kernel

Notation Space object lives in De�nition

L N L= Number of hidden layers in the neural network
n1, . . . , nL N ni =Width of the i-th hidden layer
nin = n0 N nin = n0 =input dimension, also sometimes known as the 0-th layer of the

network
nout = nL+1 N nout = nL+1 =output dimension, also sometimes known as the L+ 1-st

layer of the network
W ` Rn`×n`−1 Weight matrix connecting layer ` to `− 1
b` Rn` Bias vector for layer `
σW R Standard deviation of weight matrix entries
σb R Standard deviation of bias entries
ϕ(x) ϕ : R→ R OR

ϕ : Rn → Rn
Non-linear activation function of the network. Note that we apply this

function entry-wise when it is applied to vectors.
x Rnin Generic point in the input space Rnin

θ Rnpar Vector of all the parameters of the model (e.g. all the weights and biases
together)

θt Rnpar Parameters at time t along some sequence of parameters (e.g. how
parameters evolve under gradient descent)

f(x; θ) f : Rnin × Rnpar → R Model function at generic input x and parameters θ (e.g. a regression
model or a neural network)

∇θf(x; θ) ∇θf : Rnin × Rnpar →
Rnpar

Gradient of the model w.r.t the parameters thought of as a vector in
Rnpar , (∇θf)i (x; θ) = ∂f

∂θi
(x; θ) for 1 ≤ i ≤ npar

f(X ; θ) f(X ; ·) : Rnpar → Rnex Stacked vector of the output for all the examples

f(X ; θ) =

 f(x(1); θ)
...

f(x(nex); θ)

 ∈ Rnex

Σ`(x, x′) Σ : Rnin × Rnin → R The Neural Net Gaussian Process kernel. Encodes the variance of the `-th
layer of the network.

Θ`(x, x′) Σ : Rnin × Rnin → R The Neural Tangent Kernel. Encodes the evolution of the gradient
descent for the `-th layer of the network.

2.1 Main idea - Linear Approximation of a Neural Network

The point of this section is to argue that in this limit, where the intermediate layer widths become very
wide, neural networks behave a lot like the random feature regression model. This might be surprising
because from their de�nition neural networks seem a lot more complicated than the feature regression model....the
most important di�erence being that the feature regression is linear in the parameters, while the neural network is
de�nitely non-linear.

One way to see why a wide neural network behaves like a linear feature regression model is to take the Taylor series
expansion of the neural network with respect to the weights. For a given initialization θ0, de�ne the linearization
f lin(x; θ) by

f lin(x; θ) := f(x; θ0) +∇θf(x; θ0)T (θ − θ0)

Clearly f(x; θ0) = f lin(x; θ0) and in fact, the suprising truth is that f(x; θt) ≈ f lin(x; θt) for all times t in wide neural
neworks! The approximation f(x; θ) ≈ f lin(x; θ) turns out to be justi�ed because during training each individual
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parameter of θt− θ0 = O
(

1√
n

)
, where n is the width of the intermediate layers. (This is very similar to the feature

regression model where we showed that θt − θ0 was proportional to 1√
npar

.) This is useful because see can see from

its de�nition that f lin(x; θ) is a feature regression model (plus some random initialization) with features given by:

φ(x; θ0) = ∇θf(x; θ0)

Note that these features are random features because they depend on the initialization θ0. Even though the
individual features are random, the thing that actually matters is the kernel φ(x, θ0)Tφ(x, θ0). By our analysis of
the random feature model, we know that as the number of parameters gets large, they tend to be averaged out. The
relevant kernel in the limit will be

E
[
∇θf(x; θ0)T∇θf(x′; θ0)

]
This is precisely the kernel that drives the evolution of a neural network in the in�nite width limit! One of the main
results of [LXS+19] is that this approximation becomes more and more accurate as the size of the networks increase
in size. You can also understand the size of the error in terms of the di�erence between the function f and the linear
approximation f lin.

Theorem 19. [From [LXS+19]] Suppose the hidden layer widths are all equal so that n1 = . . . = nL = n. Let
f lin(x; θ) be the linear approximation to the network. Let θt be the evolution of the parameters under gradient �ow.
Then the following holds for all time t ≥ 0 : ∥∥f lin(x; θt)− f(x; θt)

∥∥ = O

(
1√
n

)
‖θt − θ0‖ = O(1)∥∥∇θf(x; θt)

T∇θf(x′; θt)−∇θf(x; θ0)T∇θf(x′; θ0)
∥∥ = O

(
1√
n

)
2.2 Detailed Results

2.2.1 De�nition of Deep Neural Network

De�nition 20. [A deep neural network] A deep neural net with input dimension nin, output dimension nout, with
L hidden layers, intermediate layer widths n1, . . . , nL, and non-linearity function ϕ : R → R is de�ned as follows.
The output of the intermediate layers of the neural network f `(x; θ) ∈ Rn`and h`(x; θ) ∈ Rn` for 1 ≤ ` ≤ L + 1

are de�ned recursively using parameters θ =
{
W `, b`

}L+1

`=1
where weight matrices W ` ∈ Rn`×n`−1 and bias vectors

b` ∈ Rn` by

f1(x; θ) =
σW√
n1

W 1

n1×nin

x
nin×1

+ σb b
1

n1×1
(16)

h`(x; θ) = ϕ
(
h`(x; θ)

)
(applied entry-wise)

f `+1(x; θ) =
σW√
n`

W `+1

n`+1×n`

h`(x; θ)
n`×1

+ σb b
`+1

n`+1×1

The f functions are sometimes refereed to as the �pre-activation outputs� and the h functions are the �post-activation
outputs� of the layers. The output of the network is just de�ned to be the last layer output

f(x; θ) = fL+1(x; θ)

with the convention that nL+1 = nout. As with the regression model, the scaling of 1√
n`

is chosen so that we can

take the limit n1, . . . , nL → ∞ and in this limit f(x; θ) will makes sense. At initialization, θ0 is set so that each of
the weights and biases are independent Gaussian vectors W `

ij ∼ N (0, 1) and b`i ∼ N (0, 1) where σW and σb are some
�xed variance parameters.

2.2.2 Neural Network Gaussian Processes

An important di�erence between the feature regression model and neural networks is that two relevant kernels that
appear are NOT equal.

E [f(x; θ0)f(x′; θ0)] ≈ ΣL+1(x, x′)

∇θf(x; θ0)T∇θf(x′; θ0) ≈ ΘL+1(x, x′)
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This means that the �nal formulas for the variance f(x; θ∞) is quite a bit more messy as there is no nice
cancellation, and the interpretation as a conditioned Gaussian model does not work as it did in the feature regression
model.

The �rst observation is that, as with the feature regression model, if the weights are initialized to Gaussians,
then the output of the network is also Gaussian. This is very similar to the feature regression model. Moreover,
in the limit that the intermediate widths go to in�nity, the covariance structure can be calculated in terms of the
non-linearity ϕ. The kernel Σ is sometimes called the Neural Network Gaussian Process �NNGP� kernel.

Proposition 21. In the limit that the hidden layer widths n1, n2, . . . , nL →∞,11 there is a kernel Σ`(x, x′) for each
1 ≤ ` ≤ L+1 so that for any �xed point x ∈ Rnin , the random variable f `(x; θ0) is Gaussian with mean and variance
given as

E
[
f `(x; θ0)

]
= 0, Var

[
f `(x; θ0)

]
= Σ`(x, x)

Moreover, for any �nite collection of test points Xtest =
(
x
(1)
test, . . . , x

(ntest)
test

)
, the vector f `(Xtest; θ0) =

[
f `(x

(i)
test; θ0)

]ntest

i=1
∈

Rntest is Gaussian with mean E
[
f `(Xtest; θ0)

]
= 0 and covariance matrix

Cov
[
f `(Xtest; θ0)

]
= Σ`(Xtest,Xtest) =

[
Σ`(x

(i)
test, x

(j)
test)

]ntest

i,j=1

There is a recursive formula that gives Σ` in terms Σ`−1 by

Σ1(x, x′) = σ2
W 〈x, x′〉+ σ2

b

Σ`(x, x′) = σ2
WE

[
ϕ (Z)

T
ϕ (Z ′)

]
+ σ2

b

where Z,Z ′are mean 0 Gaussians with covariance structure Cov (Z,Z ′) =

[
Σ`−1(x, x) Σ`−1(x′, x)
Σ`−1(x, x′) Σ`−1(x′, x′)

]
.

2.2.3 The Neural Tangent Kernel

Theorem 22. There is a kernel Θ(x, x′) known as the neural tangent kernel so that in the limit that the hidden
layer widths n1, . . . , nL →∞ we have

1. We have the convergence

∇θf(x; θ0)T∇θf(x′; θ0)→ Θ(x, x′)

and E
[
∇θf(x; θ0)T∇θf(x′; θ0)

]
→ Θ(x, x′)

2. The limiting network satis�es the evolution:

d

dt
f(x; θt) = −αΘ(x,X ) (f(X ; θ)− Y)

whose solution is given by formulas similar to Theorem 6 in terms of the kernel Θ, e.g. E [f(x; θ∞)] = Θ(x,X )Θ−1(X ,X )Y.

3. There is a kernel Θ` for each layer of the network; the kernel Θ is simply the output for the last layer is
simply Θ = ΘL+1. The recursive formula giving the kernel Θ` in terms of the previous layer Θ`−1 is as follows: Let
Σ`(x, x′) be the limiting covariance kernels of the neural network as in Proposition 21. Also de�ne Σ̇`(x, x′) by a
similar recursion using the derivative ϕ̇(x) = d

dxϕ(x)

Σ`(x, x′) = σ2
WE

[
ϕ (Z)

T
ϕ (Z ′)

]
+ σ2

b

Σ̇`(x, x′) = σ2
WE

[
ϕ̇(Z)T ϕ̇ (Z ′)

]
where where Z,Z ′are mean 0 Gaussians with covariance structure given by the old kernel Σ`−1(x, x′): Cov (Z,Z ′) =[

Σ`−1(x, x) Σ`−1(x′, x)
Σ`−1(x, x′) Σ`−1(x′, x′)

]
. The kernels Θ` are de�ned by the recursion:

Θ1(x, x′) = σ2
W 〈x, x′〉+ σ2

b

Σ1(x, x′) = σ2
W 〈x, x′〉+ σ2

b

Θ`(x, x′) = Θ`−1(x, x′)Σ̇`(x, x′) + Σ`(x, x′)
11More speci�cally we are doing the limits in order with n1 →∞ �rst, then n2 →∞ and so on.
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2.3 Proofs

2.3.1 Proof of Neural Network Gaussian Process

Proposition 21 is proven with induction by showing that the Gaussian process property passes from each layer to
the next layer. We give this property a name, and then prove that it propagates through the layers.

De�nition 23. We say that a random function f(x) ∼ GP (m(x),Σ(x, x′)) is a �Gaussian process� to mean that:
1. For each x ∈ Rin, f(x) is Gaussian with mean and variance given by:

E [f(x)] = m(x)

Var [f(x)] = Σ(x, x)

2. For any �nite set Xtest =
(
x
(1)
test, . . . , x

(ntest)
test

)
the vector f(Xtest) ∈ Rntest is a Gaussian vector with covariance

matrix

E [f(Xtest)] = m (Xtest)

Var [f(Xtest)] = Σ(Xtest,Xtest) =
[
Σ(x

(i)
test, x

(j)
test)

]ntest

i,j=1

Proposition 24. [Propogation of the NNGP kernel] Let x ∈ Rnin . Suppose fold : Rnin → Rnold is a random
function so that each of its components satisfy foldi (x) ∼ GP (0,Σold(x, x′)) and the components fold1 , . . . , foldnold

are
independent. De�ne the random output function fnew : Rnin → Rnnew by

fnew(x) =
σW√
nold

W
nnew×nold

ϕ
(
fhid(x)

)
nhid×1

+ σb b
nold×1

,

Suppose also that W is an nnew × nold random matrix and b is a random vector of size nold whose entries are iid
standard Gaussians. Then, in the limit nhid → ∞, each component fnewj (x) ∼ GP (0,Σnew(x, x′)) is a GP of mean
0 and covariance structure:

Σnew(x, x′) = σ2
WE

[
ϕ
(
fold1 (x)

)T
ϕ
(
fold1 (x′)

)]
+ σ2

b

= σ2
WE

[
ϕ (Z)

T
ϕ (Z ′)

]
+ σ2

b

where Z,Z ′are mean 0 Gaussians with covariance structure Cov (Z,Z ′) =

[
Σold(x, x) Σold(x′, x)
Σold(x, x′) Σold(x′, x′)

]
. Moreover,

the components foldi , foldj are independent random functions for i 6= j.

Proof. Conditioned on the values of fold(x), the function each component fnewj (x) is precisely a feature regres-

sion model with nhid features φ(x) = ϕ
(
fhid(x)

)
. Therefore, this is a Gaussian process with mean 0 and covariance

K(x, x′) =
σ2
b

nhid
φ(x)Tφ(x′)+σ2

b =
σ2
W

nhid
ϕ
(
fhid(x; θ)

)T
ϕ
(
fhid(x′; θ)

)
+σ2

b . Now notice that 1
nold

ϕ
(
fold(x)

)T
ϕ
(
fold(x′)

)
is actually a sum over nold random variables:

1

nold
ϕ
(
fold(x; θ)

)T
ϕ
(
fold(x′; θ)

)
=

1

nold

nold∑
i=1

ϕ
(
foldi (x; θ)

)
ϕ
(
foldi (x′; θ)

)
By the assumption on fold these are independent random variables! So by the Law of Large Numbers 1

nold
ϕ
(
fold(x; θ)

)T
ϕ
(
fold(x′; θ)

)
→

E
[
ϕ
(
fold1 (x; θ)

)T
ϕ
(
fold1 (x; θ)

)]
= E

[
ϕ(Z)Tϕ(Z ′)

]
where Cov (Z,Z ′) =

[
Σold(x, x) Σold(x′, x)
Σold(x, x′) Σold(x′, x′)

]
by the as-

sumption on the distribution of fold ∼ GP
(
0,Σold(x, x′)

)
. Thus the kernel converges to the desired limit.12 The

independence of fouti and foutj follows since fouti depends only on the i-th row of W , while foutj depends only on the
j-th row of W , which are independent rows by the construction of W .

12Note that more work would be needed to make this convergence more precise; e.g. if the kernel converges is it clear that the whole
process is GP in the limit? We will skip this for now.
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2.3.2 Proof of Neural Tangent Kernel

Proposition 25. [Propagation of the NTK kernel] Suppose Θold : Rnin × Rnin → R is a kernel, and fold : Rnin ×
Rnpar → Rnold is a function. Suppose that for the initialization θold0 , that foldi (x; θold0 ) ∼ GP (0,Σold(x, x′)) and
that components fhidi (x; θold0 ), fhidj (x; θold0 ) are independent for i 6= j at initialization θ0. is a function such that its
gradient satis�es

∇θfoldi (x; θold0 )T∇θfoldi (x′; θold0 ) = Θold(x, x′)

∇θfoldi (x; θold0 )T∇θfoldj (x′; θold0 ) = 0 if i 6= j

De�ne now a new function fnew : Rnin × Rn
′
par ∈ Rnew by

fnew(x; θnew)
nnew×1

=
σW√
nold

W
nnew×nold

ϕ
(
fold(x; θold)

)
nold×1

+ σb b
nnew×1

,

where θnew = θold ∪ {W} ∪ {b} ∈ Rn
′
par are the old parameters with the weight matrix W ∈ Rnnew×nold and bias

vector b ∈ Rnnew appended to them (13. De�ne the kernels Σnew : Rnin × Rnin → R and Σ̇new : Rnin × Rnin → R
using the derivative ϕ̇(x) = d

dxϕ(x) by the formulas:

Σnew(x, x′) = σ2
WE

[
ϕ (Z)

T
ϕ (Z ′)

]
+ σ2

b

Σ̇new(x, x′) = σ2
WE

[
ϕ̇(Z)T ϕ̇ (Z ′)

]
where where Z,Z ′are mean 0 Gaussians with covariance structure given by the old kernel Σold(x, x′): Cov (Z,Z ′) =[

Σold(x, x) Σold(x′, x)
Σold(x, x′) Σold(x′, x′)

]
. Then in the limit nold → ∞, we have that the gradients of the components ∇fnewi

satisfy

∇θnewfnewi (x; θnew0 )T∇θnewfnewi (x′; θnew0 )→ Θnew(x, x′)

∇θnewfnewi (x; θnew0 )T∇θnewfnewj (x′; θnew0 )→ 0 for i 6= j

where Θnew : Rnin × Rnin → R is de�ned by

Θnew(x, x′) = Θold(x, x′)Σ̇new(x, x′) + Σnew(x, x′)

Proof. First consider that the gradient product can be split into a sum of two parts, one part with only the �new�
parameters W, b, and one part with only the �old� parameters θold

∇θnewfnewi (x; θnew)T∇θnewfnewj (x′; θnew) = ∇{W,b}fnewi (x; θnew)T∇{W,b}fnewj (x′; θnew)+∇θoldfnewi (x; θnew)T∇θoldfnewj (x′; θnew)
(17)

we will show that the �rst term goes to Θold(x, x′)Σ̇old(x, x′) and the second term goes to Σold(x, x′) when i = j,
and that they both go to zero if i 6= j.

The �rst term of 17 is the same argument as the previous proposition for the the NNGP, since theW, b derivatives
are precisely the things from the NNGP kernel argument:

∇{W,b}fnewi (x; θnew)T∇{W,b}fnewi (x′; θnew) =
σ2
W

nold
ϕ
(
fold(x; θold)

)T
1×nold

ϕ
(
fold(x′; θold)

)
nold×1

+ σ2
b

→ σ2
WE

[
ϕ
(
fold(x; θold)

)T
ϕ
(
fold(x′; θold)

)]
+ σ2

b

= Σnew(x, x′)

which converges as before. When i 6= j, notice that ∇{W,b}fnewi (x; θnew)T∇{W,b}fnewj (x′; θnew) = 0 since the only

terms that are non-zero in the vector ∇{W,b}fnewi (x; θnew)T are the partial derivatives terms with an i: ∂
∂Wi,·

and ∂
∂bi

,

while the only non-zero terms in the vector ∇{W,b}fnewj (x′; θnew) are the partial derivative terms with a j: ∂
∂Wj,·

and
∂
∂bj

. Hence this inner product is 0.

13This means that the number of new parameters is n′par = npar + (nnew + 1)nold
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For the second term of 17, we will compute by chain rule, which is where the ϕ̇(x) will appear! Consider

∇θoldfnew(x; θnew)T

nnew×npar

=
σW√
nold

W
nnew×nold

∇θoldϕ
(
fold(x; θold)

)T
nold×npar

=
σW√
nold

W
nnew×nold

diag
[
ϕ′
(
fold(x; θhid)

)]
nold×nold

(
∇θoldfold(x; θold)

nold×npar

T

)

Here diag
[
ϕ′
(
fold(x; θhid)

)]
is the nold×nold matrix which has the elements from the size nold vector ϕ

′ (fold(x; θhid)
)

on it14 From this structure, we see the two terms that will give rise to the two terms in the limit we want Σ̇new(x, x′)
and Θold(x, x′). To see this consider that:

∇θoldfnewi (x; θnew)T∇θoldfnewj (x′; θnew)

=
σ2
W

nold
Wi·

1×nold

diag
[
ϕ′
(
fold(x; θhid)

)]
nold×nold

(
∇θoldfold(x; θold)

nold×npar

T∇θoldfold(x′; θold)
npar×nold

)(
diag

[
ϕ′
(
fold(x′; θhid)

)]
nold×nold

)
WT
j·

nold×1

=
σ2
W

nold
Wi·

1×nold

diag
[
ϕ′
(
fold(x; θhid)

)]
nold×nold

diag
[
Θold(x, x′)

]
nold×nold

diag
[
ϕ′
(
fold(x′; θhid)

)]
nold×nold

WT
j·

nold×1

=
σ2
W

nold

nold∑
k=1

Wikϕ
′ (foldk (x; θhid)

)
Θold(x, x′)ϕ′

(
foldk (x′; θhid)

)
Wjk

=Θold(x, x′)
σ2
W

nold

nold∑
k=1

Wikϕ
′ (foldk (x; θhid)

)
ϕ′
(
foldk (x′; θhid)

)
Wjk

as before, this is a sum of nold independent variables! In the limit nold → ∞ this converges to its mean by the law
of large numbers:

→ Θold(x, x′)σ2
WE

[
WikWjkϕ

′ (foldk (x; θhid)
)
ϕ′
(
foldk (x′; θhid)

)]
=

{
Θold(x, x′)Σ̇new(x, x′) if i = j

0 if i 6= j

by the de�nition of Σ̇new(x, x′)

3 References
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