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The model (for a distribution on spammy reviews):

Set of N words: W = {Word1,Word2, . . . ,WordN}
A document is a �subset�, D ⊂ W (aka �bag-of-words�)

We receive a list of documents D1, . . . ,DNDocs

All documents are either Spam or Ham (unknown to us!)

Each document is Ham with probability P(Ham) ∈ [0, 1], and
Spam with probability P (Spam) = 1− P(Ham). (Hopefully
P(Ham) > P(Spam))

The words from every ham document are drawn
independently and identically distributed according a probability
vector:

~PHam = (P (Word1 |Ham ) ,P (Word2 |Ham ) , . . .P (WordN |Ham ))T ∈ RN

The spam documents are created by some unknown
mechanism.
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�Inverse� Problem

The model tell us the distribution of documents given
P (Ham) and ~PHam.

The real world problem is the inverse:
Can we recover information about ~PHam given a sample
of the documents?
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A random matrix: Word Co-Occurrence Matrix

Co-occurance (Wordi ,Wordj)

=
1

NDOCS

NDOCS∑
d=1

# {Word pairs in Docd that are (Wordi ,Wordj)}
# {Word pairs in Docd}

=
1

NDOCS

NDOCS∑
d=1

#Docd (Wordi)×#Docd (Wordj)

|Docd |2

=: P̂ (Two uniform random words from a doc are Wordi & Wordj)

Proposition

Let C be the N × N matrix with Cij = Co-occurrence(Wordi ,Wordj).

(†) E [C ] = P (Ham) ~PHam
~PT
Ham + P (Spam) SSpam

i.e. C = P (Ham) ~PHam
~PT
Ham + P (Spam) SSpam + (C − E[C ])

where S is a co-occurrence matrix of the spam.
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where S is a co-occurrence matrix of the spam.

Problem:
Can we recover the ~PHam from observation of the random matrix C?
Solution Idea:
Find the closest rank 1 approximation to C , i.e. the top eigenvector
of C ( �Principle component analysis�)
Issues:
For the random matrix C , is the largest eigenvector close to ~PHam? Is
the largest eigenvalue close P(Ham)? What is the e�ect of the noise?
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Spiked Random Matrix - Toy Model #1

De�nition

For a signal parameterλ > 0, and a noise parameter σ2 > 0 the spiked
GOE (one spike) is the random matrix

(††) X λ,σ = λ~v~vT +
1√
N
Gσ2

where ~v ∈ RN , ‖~v‖ = 1 and Gσ2 ∼ GOEN(σ
2) is the N × N

symmetric matrix whose entries are independent Gaussian

Gσ2

ij
iid∼ N (0, σ2).

This is akin to:

(†) C = P (Ham) ~PHam
~PT
Ham + P (Spam) S +N
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Spiked Random Matrix

De�nition

Signal parameterλ > 0, Noise parameter σ2 > 0, ~v ∈ RN , ‖~v‖ = 1

and Gσ2 ∼ GOEN(σ
2):

(††) X λ,σ = λ~v~vT +
1√
N
Gσ2

Problem: Given the spiked random matrix X λ,σ can you recover the
vector ~v and the size of the spike λ?

Proposition (Féral-Péché '06)

As N →∞, the top eigenvalue behaves like:
Case I - High signal-to-noise: λ > σ:
Top eigenvalue of X λ,σ can recover λ with E[λTOP ] = λ+ 1

λ
σ2

Case II - Low-signal-to-noise: λ < σ:
Top eigenvalue of X λ,σ indistinguishable from pure noise case λ = 0.
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Picture Proof (Hermitian Matrix Case)
Create a dynamic matrix, G (t), where each entry is a Brownian
motion

The eigenvalues of 1√
N
G (t) evolve like a Dyson Brownian

Motion a.k.a. Non-intersecting Brownian Motions.

At time t, distribution is ≈semi-circle distribution on [−2
√
t, 2
√
t].

We look at t = σ2.
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The eigenvalues of:

X λ(t) = λ~v~vT +
1√
N
G (t)

have the same evolution, but di�erent initial condition!

e.g.
λ = 1,N = 25.
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λ = 1,N = 25. Low-signal-to-noise: Indistinguishable from pure noise
at t = σ2 = 4!
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The eigenvalues of:

X λ(t) = λ~v~vT +
1√
N
G (t)

have the same evolution, but di�erent initial condition! e.g.
λ = 3,N = 25.



The eigenvalues of:

X λ(t) = λ~v~vT +
1√
N
G (t)

have the same evolution, but di�erent initial condition! e.g.
λ = 3,N = 25. High-signal-to-noise at t = σ2 = 4.



Part 3: Functions on the Sphere: Random Tensors



Co-Occurrence Tensor, k ≥ 3

Empirical Co-Occurrence for k-tuples of words:

Empirical Co-occurance (Wordi1 ,Wordi2 , . . .Wordik )

= P̂ (k uniform words from a doc are Wordi1 ,Wordi2 , . . . ,Wordik )

Proposition

Let C (k) be the co-Occurrence k-tensor. Recall the topic probabilities

P (Topicj) and the probability vectors ~PTopicj . Then:

C (k) = P (Ham) ~P⊗kHam + P (Spam) SSpam +N

Can we recover ~PHam from the noisy observation C (k)?
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Random Tensor Model

De�nition

The spiked Gaussian k-tensor is:

(† † †) Y (k) = λ~v⊗k +
1√
N
G (k)

where G (k) is the symmetric k tensor whose entries are G
(k)
i1...ik

iid∼ N (0, 1)

De�nition

The �energy landscape� of Y (k) is the function f : RN → R:

f (~u) =
〈
Y (k), ~u⊗k

〉
= λ 〈~v , ~u〉k + Hk(~u)

where Hk(~u) is a random degree k polynomial:

Hk(u) =
1√
N

N∑
i1,...,ik=1

G
(k)
i1...ik

ui1 . . . uik
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Problem: (Recall f (~u) =
〈
Y (k), ~u⊗k

〉
= λ 〈~v , ~u〉k + Hk(~u) ) �Tensor

principle component analysis� is the maximization problem:

maximize f (~u)

subject to ‖~u‖ = 1
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Problem: (Recall f (~u) =
〈
Y (k), ~u⊗k

〉
= λ 〈~v , ~u〉k +Hk(~u) ) �Tensor PCA�

is the maximization problem:

maximize f (~u)

subject to ‖~u‖ = 1

More general things we can look at: The set of all critical points. The
set of all local maxima.
Questions we can ask: Where are the critical points located? (i.e. how
far are they from ~v) What is the energy value of the critical points?

Theorem 1 (Ben Arous, Mei, Montenari, N. 2017)

Let M ⊂ (−1, 1) and let E ⊂ R. Let CrtN,∗(M,E ) be the number of

critical points of the function ~f (·) that have 〈~u, ~v〉 ∈ M and ~f (~u) ∈ E .
Then:

E [CrtN,∗(M,E )] ≈ exp

(
N sup

m∈M,e∈E
S∗ (m, e)

)
where S∗ is a nasty but explicit function.
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Theorem 2 (Ben Arous, Mei, Montenari, N. 2017)

Let M ⊂ (−1, 1) and let E ⊂ R. Let CrtN,0(M,E ) be the number of local

maxima of the function ~f (·) that have 〈~u, ~v〉 ∈ M and ~f (~u) ∈ E . Then:

E [CrtN,0(M,E )] ≈ exp

(
N sup

m∈M,e∈E
S0 (m, e)

)

where S0 is a nasty but explicit function.



Location of Critical Points

S∗(m) = maxe∈R S∗(e, x) is the exponential growth rate of # of critical
points at 〈~u, ~v〉 = m.
(https://www.desmos.com/calculator/lez8qptvu1) Signal-to-noise
λ = 0.1

https://www.desmos.com/calculator/lez8qptvu1


Location of Critical Points

S∗(m) = maxe∈R S∗(e, x) is the exponential growth rate of # of critical
points at 〈~u, ~v〉 = m.
(https://www.desmos.com/calculator/lez8qptvu1) S/N λ = 0.75

https://www.desmos.com/calculator/lez8qptvu1


Location of Critical Points

S∗(m) = maxe∈R S∗(e, x) is the exponential growth rate of # of critical
points at 〈~u, ~v〉 = m.
(https://www.desmos.com/calculator/lez8qptvu1) S/N λ = 1.5

https://www.desmos.com/calculator/lez8qptvu1


Location of Critical Points

S∗(m) = maxe∈R S∗(e, x) is the exponential growth rate of # of critical
points at 〈~u, ~v〉 = m.
(https://www.desmos.com/calculator/lez8qptvu1) S/N λ = 2.25

https://www.desmos.com/calculator/lez8qptvu1


Location of Critical Points - Results

Corollary

Let:

λc :=

√
1

2k

(k − 1)(k−1)

(k − 2)(k−2)

If λ < λc then there are no �good� critical points. If λ > λc then

S∗(m) = 0 at the point where:

m2k−4 (1−m2
)
=

1

2kλ2



Proof Ideas - Kac-Rice Formula

Main Idea, the Kac-Rice formula f : [a, b]→ R

# zeros of f on [a, b] = lim
ε→0

bˆ

a

|f ′(x)| · δε (f (x)) dx

where δε(x) is an approximate dirac-delta, lim
ε→0

´
δε(x)g(x) = g(0).



Proof Ideas

We count zeros of ∇f , so Kac-Rice formula gives:

E [Crt∗(M ,E )]

=

ˆ

{~u:〈~u,~v〉∈M}

E
[∣∣∣det(Hess f (~u)

)∣∣∣ · 1 {f (~u) ∈ E}
∣∣∣∇~f (~u) = 0

]
The Hessian Hess(f (~u)) is a spiked random matrix!

Hess (f (~u)) ∼ k(k − 1)λmk−2(1−m2)~e1~e
T
1
+ GOEN−1

Use �large deviations� for spiked random matrix to evaluate
E [Crt∗(M ,E )]



Large Deviation Results Used
The spectrum of the GOE concentrates around the semi-circle law:

P (Ln /∈ B(σSC , ε)) ≈ exp
(
−N2C (ε)

)
For the GOE:

P
(
λGOE
max ≥ t

)
≈ exp (−NI1(t))

I1(t) =

{´ t
2

√(
y
2

)2 − 1dy t ≥ 2

0 otherwise

For the spiked GOE X = θe1e
T
1
+ GOEN we have [Maida '07]:

P
(
λθ−GOE
max ≤ t

)
≈ exp (−NL(θ, t))

L(θ, t) =



´ t
θ+ 1

θ

√
( 1
2
y)2 − 1dy − θ

2

[
t −

(
θ + 1

θ

)]
+1

8

[
t2 −

(
θ + 1

θ

)2]
2 ≤ t < θ + 1

θ

∞ t < 2

0 otherwise



Formulas for S∗ and S0

Recall P
(
λGOE
max ≥ t

)
≈ exp (−NI1(t)) and

P
(
λθ−GOE
max ≤ t

)
≈ exp (−NL(θ, t))

S∗(m, x) =
1

2
log(k − 1) +

1

2
log(1−m2)

−kλ2m2k−2(1−m2)− (x − λmk)2

+
k

2(k − 1)
x2 + I1

(∣∣∣∣∣
√

2k

k − 1
t

∣∣∣∣∣
)

S0(m, x) = S∗(m, x)− L

(√
2k(k − 1)λmk−2(1−m2),

√
2k

k − 1
x

)



Location of Local Maxima

De�nition

De�ne S0(m) = maxe∈R S0(m, e) to be the exponential growth rate of the
number of local maxima with 〈~u, ~v〉 = m.
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k =3.  =0.1.



Location of Local Maxima

De�nition

De�ne S0(m) = maxx∈R S0(m, x) to be the exponential growth rate of the
number of local maxima with 〈~u, ~v〉 = m.
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k =3.  =0.75.



Location of Local Maxima

De�nition

De�ne S0(m) = maxx∈R S0(m, x) to be the exponential growth rate of the
number of local maxima with 〈~u, ~v〉 = m.

-1 -0.5 0 0.5 1

m

-0.1

-0.05

0

0.05

0.1

S
0
(m

)

k =3.  =1.5.



Location of Local Maxima

De�nition

De�ne S0(m) = maxx∈R S0(m, x) to be the exponential growth rate of the
number of local maxima with 〈~u, ~v〉 = m.
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k =3.  =2.25.



Location of Local Maxima

De�nition

De�ne S0(m) = maxx∈R S0(m, x) to be the exponential growth rate of the
number of local maxima with 〈~u, ~v〉 = m.
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Location and Energy
S(m, e) ⊂ [−1, 1]× R where there are exponential numerous critical points
S?(m, x) > 0 (k = 3, λ = 3)
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Location and Energy
S(m, e) ⊂ [−1, 1]× R where there are exponential numerous local maxima:
S0(m, x) > 0 (k = 3, λ = 3)
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