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Outline

o Motivating real world scenario:
Detecting a signal in a noisy/spam filled world

o Toy Model 1:
Detecting a spike in Spiked Random Matrices

o Toy Model 2:
Detecting a spike in Random Tensors
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The model (for a distribution on spammy reviews):
e Set of N words: W = {Word,, Word,, ..., Wordy}
o A document is a “subset”, D C W (aka “bag-of-words")
e We receive a list of documents Dy, ..., Dy,
o All documents are either Spam or Ham (unknown to us!)

e Each document is Ham with probability P(Ham) € [0, 1], and
Spam with probability P (Spam) =1 — P(Ham). (Hopefully
P(Ham) > P(Spam))

e The words from every ham document are drawn
independently and identically distributed according a probability
vector:

Priam = (P (Word, |[Ham) , P (Word, |Ham) , ... P (Wordy |Ham))"

e The spam documents are created by some unknown
mechanism.
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“Inverse” Problem

o The model tell us the distribution of documents given
P (Ham) and Pyap.

o The real world problem is the inverse:
Can we recover information about Py, given a sample
of the documents?
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A random matrix: Word Co-Occurrence Matrix

Let C be the N x N matrix with C; = Co-occurrence( Word;, Word}).

() E[C] = P (Ham)PramPfom + P (Spam) Sspom
ie. C = P(Ham)PyumP}/,, + P (Spam) Sspam + (C — E[C])

where S is a co-occurrence matrix of the spam.

Problem: .

Can we recover the Py,,, from observation of the random matrix C?
Solution Idea:

Find the closest rank 1 approximation to C, i.e. the top eigenvector
of C ( "Principle component analysis”)

Issues: .

For the random matrix C, is the largest eigenvector close to Py.,? Is
the largest eigenvalue close P(Ham)? What is the effect of the noise?
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Spiked Random Matrix - Toy Model #1

For a signal parameter\ > 0, and a noise parameter 0® > 0 the spiked
GOE (one spike) is the random matrix

() XM = a0 + ﬁcaz

where Vv € RV, |[V]| =1 and G”* ~ GOEy(c?) is the N x N
symmetric matrix whose entries are independent Gaussian

o2 lid
G7 ~ N(0,0%).

This is akin to:

(1) C =P (Ham)PomPL,,, + P (Spam) S + N
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Spiked Random Matrix

Signal parameter)\ > 0, Noise parameter 02 > 0, v € RV, ||V| =1
and G”° ~ GOEy(c?):

2

(1) XM =AW + —=G°

5~

4

Problem: Given the spiked random matrix X*“ can you recover the
vector v and the size of the spike \7

Proposition (Féral-Péché '06)

As N — oo, the top eigenvalue behaves like:

Case | - High signal-to-noise: A > o:

Top eigenvalue of X7 can recover A with E[Arop] = A + +0?

Case Il - Low-signal-to-noise: \ < o:

Top eigenvalue of X indistinguishable from pure noise case \ = 0.
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Picture Proof (Hermitian Matrix Case)

Create a dynamic matrix, G(t), where each entry is a Brownian
motion. The eigenvalues of ﬁG(t) evolve like a Dyson Brownian
Motion a.k.a. Non-intersecting Brownian Motions.

0.0 0.5 10 15 20 25 3.0 35 40

At time t, distribution is ~semi-circle distribution on [—2v/t, 2+/1].
\Wa lanlk A+ + — ~2
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The eigenvalues of:

A T 1
XA(t) = AWV + \/NG(t)
have the same evolution, but different initial condition! e.g.
A =1, N =25. Low-signal-to-noise: Indistinguishable from pure noise
at t =02 = 4!
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The eigenvalues of:

1
XMNt) = AWV + ——=G(t
(t —=6(0)
have the same evolution, but different initial condition! e.g.
A=3N=25
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The eigenvalues of:

1
XMNt) = AWV + ——=G(t
(® Z=6(0)
have the same evolution, but different initial condition! e.g.
A = 3, N = 25. High-signal-to-noise at t = 02 = 4.




Part 3: Functions on the Sphere: Random Tensors
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Co-Occurrence Tensor, k > 3

Empirical Co-Occurrence for k-tuples of words:

Empirical Co-occurance (Word,,, Word,,, . .. Word,, )

2

A

= P (k uniform words from a doc are Word,,, Word,,, . .., Word,)

Proposition

Let CK) pe the co-Occurrence k-tensor. Recall the topic probabilities
P (Topic;) and the probability vectors Propic,. Then:

ck — p (Ham) ﬁ,?:m + P (Spam) Sspam + N

Can we recover lsHam from the noisy observation C(¥)?



Random Tensor Model

Definition

The spiked Gaussian k-tensor is:

(K) _ ook L~k
1) YR = v +\/NG

where G(%) is the symmetric k tensor whose entries are G

(k)

i1 .. ik

K N(0,1)

4



Random Tensor Model

Definition

The spiked Gaussian k-tensor is:

(K) _ ook L~k
1) YR = v +mc

where G(¥) is the symmetric k tensor whose entries are G-(k) A ~ N(0,1)

Definition

oy
A\

The “energy landscape” of Y(¥) is the function f : RN — R:
(@) = (YW,8) = X7 0" + H(@)

where H (@) is a random degree k polynomial:
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principle component analysis” is the maximization problem:
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maximize ()

subject to  ||u]| =1

More general things we can look at: The set of all critical points. The
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far are they from V) What is the energy value of the critical points?

Theorem 1 (Ben Arous, Mei, Montenari, N. 2017)

Let M C (—1,1) and let E C R. Let Crty (M, E) be the number of
critical points of the function £(-) that have (&, V) € M and f(d) € E.
Then:

E [Crty (M, E)] = exp <N sup  S.(m, e))
meM,ecE

where S, is a nasty but explicit function.
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Let M C (—1,1) and let E C R. Let Crty (M, E) be the number of

— -

critical points of the function 7(-) that have (&, V) € M and (&) € E.
Then:

E [Crty (M, E)] = exp (N sup  S.(m, e))
meM,ecE

where S, is a nasty but explicit function.




Theorem 2 (Ben Arous, Mei, Montenari, N. 2017)
Let M C (—1,1) and let E C R. Let Crtyo(M, E) be the number of local

—

maxima of the function f(-) that have (&, V) € M and f (&) € E. Then:

E [Crtno(M, E)] = exp (N sup  So (m, e))
meM,ecE

where Sp is a nasty but explicit function.




Location of Critical Points
Si(m) = maxeecr S«(e, x) is the exponential growth rate of # of critical
points at (&, V) = m.

(https://www.desmos.com/calculator/lez8qptvul) Signal-to-noise
A=0.1

B0 Fr
= P 0-0-0-0-0-0-0.

< Toee +
< ...

[=% ! =
§ .. .

OO -“‘ «

N
\\
o
h
0 ol2 ol4 ol6 N ol 1.2
\ Location(m)
\
\
0-2- LY
: Q%
L
L}
04 4
0:4 i



https://www.desmos.com/calculator/lez8qptvu1

Location of Critical Points

S.(m) = maxecr S«(e, x) is the exponential growth rate of # of critical
points at (i, V) = m.
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Location of Critical Points

Si(m) = maxecr S«(e, x) is the exponential growth rate of # of critical
points at (i, V) = m.
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Location of Critical Points

S.(m) = maxecr S«(e, x) is the exponential growth rate of # of critical
points at (&, V) = m.

(https://www.desmos.com/calculator/lez8qptvul) S/N A =2.25
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Location of Critical Points - Results

Corollary
Let:

1 (k= 1)(k-1)
<\ 2k (k—2)(k_2)
If A < A then there are no “good” critical points. If A > \¢ then
Si(m) = 0 at the point where:

1
— 2k)\2

m2k—4 (1 _ m2)




Proof Ideas - Kac-Rice Formula

Main Idea, the Kac-Rice formula f : [a, b] = R

b
4 zeros of £ on [, b] —!m/|f’(x)|-5e(f(x))dx

where d.(x) is an approximate dirac-delta, lim [ d.(x)g(x) =

e—0



Proof Ideas

We count zeros of V£, so Kac-Rice formula gives:
E [Crt.(M, E)]
_ / E [|det (Hess 7(u))|- 1 {r(a) € £} |VF(@) = 0]

{@(d,7)eM}
The Hessian Hess(f()) is a spiked random matrix!
Hess (f(i)) ~ k(k—1)Am*"%(1 — m*)é,é&] + GOEn_,

Use “large deviations” for spiked random matrix to evaluate
E[Crt.(M, E)]



Large Deviation Results Used
The spectrum of the GOE concentrates around the semi-circle law:

P (L, & B(osc.€)) = exp (—=N*C(e))
For the GOE:
P(ASYE>t) ~ exp(—Nh(t))

A) - {({ (5 -1dy 22

otherwise
For the spiked GOE X = fe,e] + GOEy we have [Maida '07]:
P\ <t) ~ exp(—NL(9 t))
Vgl 04 )
—(0+3)] 2<t-
t<?2

otherw

'—fb\»-‘

+
1
8

+

Lo, t) =

8



Formulas for S, and S

Recall P (ASPE > t) ~ exp (—Nk(t)) and
P (A,S0F < t) ~ exp (—NL(0, t))

1 1
Si(m,x) = 3 log(k — 1) + E |og(1 — m2)
k)\2 2k— 2(1

/ it
2( X+1 Vik—1

]

So(m,x) = S.(m,x)—L <\/2k(k —1)Am* (1 — m?),




Location of Local Maxima

Definition

Define So(m) = maxeer So(m, €) to be the exponential growth rate of the
number of local maxima with (&, V) = m.
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Location of Local Maxima

Definition

Define So(m) = maxxer So(m, x) to be the exponential growth rate of the
number of local maxima with (&, V) = m.
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Location of Local Maxima

Definition

Define So(m) = maxxer So(m, x) to be the exponential growth rate of the
number of local maxima with (&, V) = m.
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Location of Local Maxima

Definition

Define So(m) = maxxer So(m, x) to be the exponential growth rate of the
number of local maxima with (&, V) = m.
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Location of Local Maxima

Definition

Define So(m) = maxxer So(m, x) to be the exponential growth rate of the
number of local maxima with (&, V) = m.
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Location and Energy

S(m, e) C [-1,1] x R where there are exponential numerous critical points
Si(m,x) >0 (k=3,A=3)

qF —




Location and Energy

S(m, e) C [-1,1] x R where there are exponential numerous local maxima:
So(m,x) >0 (k=3,A=3)

At






