
Fibonacci Numbers and Binet's Formula using

Generating Functions/In�nite Sums

A sequence is a list of numbers that never ends (e.g. 1, 3, 5, 7, 9, 13, . . .) The Fibonacci Sequence is an
exciting sequence of numbers we will talk about today. The �rst few numbers are:

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 . . .

0 1 1 2 3 5 8 13 21 34 . . .

The rule that makes the Fibonacci Sequence is �the next number is the sum of the previous two�. This
kind of rule is sometimes called a recurrence relation. Mathematically, this is written as:

fn = fn−1 + fn−2

There is an explicit formula for the n-th Fibonacci number known as Binet's formula:
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In the rest of this note, we will explain how this works by using a really powerful idea called �generating

functions� which let us attack these problems. Generating functions involve using algebra to solve in�nite

sums. Before we jump into Fibonacci, we will start with some warm up problems to get the hang of it. (Note
that in�nite sums can be slippery...not all in�nite sequences can be summed. We won't worry about these
technicalities here!) (Note also the solutions to the exercises are included on the next page)

Exercise 0: 1 + 1
2 + 1

4 + 1
8 + 1

16 + 1
32 + . . . = ?

Exercise 1: 1 + x+ x2 + x3 + x4 + . . . = ?

Exercise 2: 1 + 2x+ 4x2 + 8x3 + 16x4 + . . . = ?

Exercise 3: 1 + 2x+ 3x2 + 4x3 + 5x4 + . . . = ?

1



Generating Functions

For any sequence of numbers, there is a generating function associated with that sequence. (By a function,
I mean an expression that depends on x.) The rule for the generating function is to multiply each term of
the sequence by xn, and �nally do the in�nite sum of all these terms. This is written mathematically as:
De�nition: The generating function for the sequence a0, a1, a2, a3, . . . is the in�nite sum:

S = a0 · x0 + a1 · x1 + a2 · x2 + a3 · x3 + . . .

Here are some examples. We already did the work for these as exercises on the previous page!

Example 1: The generating function for the sequence 1, 1, 1, 1, 1 . . . is S = 1
1−x .

We must evaluate the in�nite sum S = 1 · x0 + 1 · x1 + 1 · x2 + 1 · x3 + . . .. We use the "shifting trick":

S = 1+ x+ x2+ x3 + . . .

− xS = x+ x2+ x3 + . . .

∴ (1− x)S = 1+ 0+ 0+ 0 + . . .

∴ S = 1
1−x

Example 2: The generating function for the sequence 1, 2, 4, 8, 16 . . . is S = 1
1−2x .

We must evaluate the in�nite sum S = 1 · x0 + 2 · x1 + 4 · x2 + 8 · x3 + . . ..
Notice that we can rewrite each term as a power of 2x, namely S = 1 · x0 + (2x)1 + (2x)2 + (2x)3 + . . ..

Now we can use the same shifting trick as before (Alternatively, you can "plug in 2x into Example 1):

S = 1+ (2x)+ (2x)2 + . . .

− 2xS = 2x+ (2x)2 + . . .

∴ (1− 2x)S = 1+ 0+ 0 + . . .

∴ S = 1
1−2x

Example 3: The generating function for the sequence 1, 2, 3, 4, 5, 6 . . . is S = 1
(1−x)2 .

We must evaluate the in�nite sum S = 1 · x0 + 2 · x1 + 3 · x2 + 4 · x3 + . . .. We can use the same shifting
trick to reduce this to the sum we already computed in example 1:

S = 1+ 2x+ 3x2+ 4x3 + . . .

− xS = x+ 2x2+ 3x3 + . . .

∴ (1− x)S = 1+ x+ x2+ x3 + . . .

=
1

1− x
from Example 1

∴ S = 1
(1−x)2

Fact 1: The generating function for the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8 . . . is S = x
1−x−x2 .

We must evaluate the in�nite sum S = 0 · x0 + 1 · x1 + 1 · x2 + 2 · x3 + 3 · x4 . . .. Since the recurrence
relation for the Fibonacci numbers involves the last two numbers, we must use a "double" shifting trick:

S = 0+ x+ x2+ 2x3+ 3x4+ 5x5 + . . .

− xS = 0+ x2+ x3+ 2x4+ 3x5 + . . .

− x2S = 0+ x3+ x4+ 2x5 + . . .

∴
(
1− x− x2

)
S = 0+ x+ 0+ 0+ 0+ 0 + . . .

∴ S =
x

(1− x− x2)
The reason all the 0's appear is from the recurrence relation for the Fibonacci numbers; in other words

the fact that the next Fibonacci number is the sum of the previous two.
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The Golden Ratio

De�ne two numbers ϕ and β to be the roots of the quadratic equation x2 − x − 1. (This quadratic
equation appeared "in reverse" in the denominator for the generating function of the Fibonacci numbers).

By the quadratic equation, these are:

ϕ =
1 +
√
5

2
≈ 1.6180339887 . . .

β =
1−
√
5

2
≈ −0.6180339887 . . .

The number ϕ is called the Golden Ratio and has a number of exciting properties (go see the Wikipedia
page for more info!). Both ϕ and β are intimately related to the Fibonacci sequence because they appear in
the generating function!

Fact 2: 1− x− x2 = (1− ϕx)(1− βx)

You can check this fact by expanding it out using "FOIL" and the fact that ϕβ = −1 and ϕ + β = 1.
Try it here!

Fact 3: Let fn be the n-th Fibonacci number. Then we have the explicit formula: fn = 1√
5
(ϕn − βn)

The trick we use to get this result is to rewrite the generating function for the Fibonacci numbers
S = x

(1−x−x2) we found in Fact 1 using the factorization 1− x− x2 = (1− ϕx)(1− βx) we found in Fact 2.

By some algebraic manipulations, (This is called the partial fractions trick!) we �nd that:

x

1− x− x2
=

1√
5

1

1− ϕx
− 1√

5

1

1− βx

Now we recognize that 1
1−ϕx and 1

1−βx look a lot like the answer from Example 2. These are in�nite
sums!

1

1− βx
= 1 + βx+ β2x2 + β3x3 + . . .

1

1− ϕx
= 1 + ϕx+ ϕ2x2 + ϕ3x3 + . . .

Putting this all together gives:

f0 + f1x+ f2x
2 + f3x

3 + . . .

=
x
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=
1√
5

1
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− 1√

5

1
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=
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5

(
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)
− 1√
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(
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)
= 0 +

1√
5
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1√
5

(
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)
x+

1√
5

(
ϕ3 − β3

)
x3 + . . .

Since these two "polynomials" are equal for every value of x, each term must individual by equal. Reading
o� the coe�cients of the power xn gives the �nal result,

fn =
1√
5
(ϕn − βn) = 1√

5

(
1 +
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n
. This is Binet's formula!
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Converting Miles to Kilometers

Factoid 1: Fibonacci numbers can be used to convert miles to kilometers by: fn km ≈ fn−1mi

The secret of this factoid is an amazing coincidence between the numerical value of ϕ and the number of
kilometers in a mile, and the fact that |β| < 1. Firstly, notice that:

ϕ = 1.6180 . . .

1mi

1km
= 1.6093 . . .

Because these two values are close, the approximation 1 mi ≈ ϕ km is pretty good (to about 1%).
Now notice that since β < 1, that βn is really small as n gets larger; βn ≈ 0. So we have some more
approximations:

fn =
1√
5
(ϕn − βn) ≈ 1√

5
ϕn

fn−1 =
1√
5

(
ϕn−1 − βn−1

)
≈ 1√

5
ϕn−1

∴ fn ≈ ϕfn−1

Along with 1mi ≈ ϕkm, this means that fn−1km ≈ fnmi. This works best if n is not-too-small, because
when n is large, our approximation that βn ≈ 0 becomes more accurate. n = 5 is already quite a good
approximation (β4 ≈ 0.0002). The �rst couple listed for you, starting at n = 5:

3 mi ≈ 5 km

5 mi ≈ 8 km

8mi ≈ 13 km

If you want to covert numbers not on this list, you can bootstrap from the above approximations. For
example, starting from 5mi ≈ 8km, you can do:

100mi = 20 · 5mi ≈ 20 · 8km = 160km

If you found this interesting...

Here are some great websites that you can check out where you can get more!

Wikipedia links:

• Fibonacci number

• Golden ratio

• Recurrence relation

• Generating function

Other links:

• �Doodling in Math: Spirals, Fibonacci, and Being a Plant [1 of 3]� by Vi Hart.
http://www.khanacademy.org/math/vi-hart/v/doodling-in-math�spirals��bonacci�and-being-a-plant�
1-of-3

• �Exercise - Write a Fibonacci Function� by Salman Khan (has a computer science �avor)
https://www.youtube.com/watch?v=Bdbc1ZC-vhw
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