
Intro to In�nite Depth-and-Width Limits:

Log-Gaussian Behaviour of Deep Neural Networks

See https://youtu.be/93X0L1U5C0E for a video tutorial of these notes!

Notation Description Notation Description

nin ∈ N Input Dimension nout ∈ N Output Dimension
n ∈ N Hidden layer width d ∈ N Number of hidden layers (Depth)
ϕ(·) ReLU function ϕ(x) = max(x, 0)

x ∈ Rnin Input W 0 ∈ Rnin×n Weight matrix for layer 0
z` ∈ Rn Hidden Layer Neurons (pre-activation) W ` ∈ Rn×n Weight Matrix Hidden Layer

zout ∈ Rnout Network Output W out ∈ Rn×nout Weight matrix for output layer
All weights initialized to iid N (0, 1) random variables.

1 De�nitions and Main Results

De�nition 1. A (fully connected) deep neural network is de�ned by the update rules

First Layer: z0 =

√
1

nin
W 0x (1)

d Hidden Layers: z` =

√
2

n
W `ϕ(z`−1) (2)

Last Layer: zout =

√
1

n
W outzd (3)

Consider the limit where both the network depth d → ∞ and hidden layer width n → ∞ in such away that the
ratio d/n converges to a non-zero constant. In this limit the output of the network is approximately log-Gaussian
scalar times an independent Gaussian vector,

zout ≈ exp

(
1

2
G

)
~W

where G ∈ R is a approximately Gaussian and ~W ∈ Rnout is a Gaussian vector with iid Gaussian N (0, 1) entries.
The following theorem make this precise.

Theorem 2. Suppose all weights are initialized to iid N (0, 1) random variables. For any depth and width, the
output of the network on initialization is equal in distribution to

zout
d
=
‖x‖√
nin

exp

(
1

2
G

)
~W, (4)

where ~W ∈ Rnout is a Gaussian random vector with iid N (0, 1) entries, and G = G(n, d) is an independent random
variable that depends only on the hidden layers of the network.
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In the in�nite depth-and-width limit the random variable G has the following behavior in terms of a param-
eter β

β :=
2

n
+ 5

d

n

E [G] = −1

2
β +O

(
d

n2

)
Var[G] = β +O

(
d

n2

)
and G converges to a Gaussian random variable with this mean and variance.

1.1 Comparison to the In�nite Width limit

In �xed-depth d = cons′t and in�nite-width n → ∞ limit the random variable G → 0. In this in�nite-width-only-
limit, zout is purely Gaussian Other nice properties also emerge in this limit, for instance individual neurons become
asymptotically independent. These simpli�cations allows much more detailed information about the network and
training behavior than is currently known about the in�nite depth-and-width limit, for example the NTK learning
regime.

However, since real networks have �nite depth and �nite width, the in�nite width limit can be a lot less accurate
than the in�nite depth-and-width limit! Below is the result of a Monte Carlo simulation of 215 samples comparing
the theory to �nite networks. Here the network widths are n = 100, nin = nout = 10 and at three di�erent values

of depth, d = 1, d = 10 and d = 100 . The probability density of the random variable ln
(
‖zout‖2

)
is shown.

The prediction of Theorem 2 is the red curve; the in�nite width prediction (where G = 0) is the blue curve. The
depth-to-width prediction is much more accurate than the in�nite width prediction! For deep networks this is a big
di�erence!
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1.2 Extensions

1.2.1 Unequal layer sizes and arbitrary weights

Suppose that instead of all the layer widths being equal to n, the `-th layer is width n`. A similar argument applies
when the layer sizes are di�erent to show that the e�ective parameter is now

β =
2

n0
+ 5

d∑
`=1

1

n`
.

The result also holds when the weights W are any (reasonable) distribution, not just Gaussian; although in this
case the proof is much harder. This universality result is proven in [HN19b].
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1.2.2 Skip connections (ResNets)

If the layer weights have skip connections in the hidden layers so that for some coe�cients α, λ ∈ R+ with α2+λ2 = 1
so that the update rule

z` = αz`−1 + λ

√
2

n
W `ϕ(z`−1)

then a similar log-Gaussian result holds. The β parameter becomes:

β =
2

n
+
(
5λ4 + 4α2λ2

) d
n

There are a few other changes in the result that happen due to the skip connections; see [LNR21] for details!.

1.2.3 Gradients

For ReLU networks, one can show that if the input is ‖x‖ = 1, then the input-output matrix has the same
distribution as the original function:

∂

∂xi
zout

d
= zout

so this log-normal result behavior holds for derivatives of the network as well. The proof can be found in [LNR21].
This connection allows one to prove similar results about quantities related to the gradients of the network in the
in�nite depth-and-width limit, for example corrections to the NTK in [HN19a].

2 Informal Proof Ideas

The key element is the following property of Gaussian random matrices. If W has iid N (0, 1) entries, then for any
vector x, we have

Wx
d
= ‖x‖ g

where g is a vector whose entries are iid N (0, 1) random variables. Applying this to the �rst and last layer of the
network, we �nd

z0
d
=
‖x‖√
nin

g0, zout
d
=

∥∥zd∥∥√
n
gout

where g0 ∈ Rn and gout ∈ Rnout are iid collection of vectors whose entries iid N (0, 1) random variables. In light of
this, if we de�ne

G := ln

( ∥∥zd∥∥2 /n
‖x‖2 /nin

)
,

then we see that G only depends on the hidden layers of the network. (G has the distribution of ln
(∥∥zd∥∥2 /n)

when z0 = g0 ). With this de�nition, (4) holds!
From the construction of G, the essence of the in�nite depth-and-width limit is to understand the distribution

of
∥∥zd∥∥. To understand this, we look at the ratios

∥∥z`+1
∥∥ / ∥∥z`∥∥ layer by layer. By using the homogeneity property

of ReLU ϕ(|c|x) = |c|ϕ(x), we can divide z`+1 from (1) by
∥∥z`∥∥ to obtain an expression depending only on the

unit vector ẑ` = z`/
∥∥z`∥∥ :

z`+1

‖z`‖ =

√
2

n
W `+1ϕ(ẑ`)

d
=

√
2

n

∥∥ϕ(ẑ`)∥∥ g`+1.

In addition, this expression also shows that each hidden layer is a scalar multiple of the Gaussian vector g`, namely:
ẑ` = ĝ`. Hence:

z`+1

‖z`‖
d
=

√
2

n

∥∥ϕ(ĝ`)∥∥ g`+1 =⇒
∥∥z`+1

∥∥
‖z`‖

d
=

√
2

n

∥∥ϕ(ĝ`)∥∥∥∥g`+1
∥∥

We can �nally write
∥∥zd∥∥ as a telescoping product as:

∥∥zd∥∥ =
∥∥z0∥∥ d−1∏

`=0

∥∥z`+1
∥∥

‖z`‖
d
=
‖x‖√
nin

∥∥g0∥∥ d−1∏
`=0

√
2

n

∥∥ϕ(ĝ`)∥∥∥∥g`+1
∥∥ . (5)
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We �nally use the homogeneity of ϕ(·) again to combine
∥∥ϕ(ĝ`)∥∥∥∥g`∥∥ =

∥∥ϕ (g`)∥∥ to get:

∥∥zd∥∥ d
=
‖x‖√
nin

(
d−1∏
`=0

√
2

n

∥∥ϕ(g`)∥∥)∥∥gd∥∥ .
This shows that

∥∥zd∥∥ is equal in distribution to a product of independent random variables! Equivalently,

G = ln

(
‖zd‖2/n
‖x‖2/nin

)
is a sum of independent random variables, and a central limit theorem will apply as d→∞

to get the result. More speci�cally,

G = ln

( ∥∥zd∥∥2 /n
‖x‖2 /nin

)

=

d−1∑
`=0

ln

(
2

n

∥∥ϕ (g`)∥∥2)+ ln

(
1

n

∥∥gd∥∥2)
Each term is approximately1 Gaussian in the limit n→∞,

1

n
‖g‖2 ≈ N

(
1,

2

n

)
2

n
‖ϕ(g)‖2 ≈ N

(
1,

5

n

)
Since the variance is small, these are highly concentrated around the mean 1, by the taking the log, and using the

Taylor series expansion of ln(1 + x) ≈ x− 1
2x

2 +O(x3) to get the approximation ln
(
N (1, σ

2

n )
)
≈ N (− 1

2
σ2

n ,
σ2

n ) we

then get

ln

(
1

n
‖g‖2

)
≈ N

(
−1

2

(
2

n

)
,
2

n

)
ln

(
2

n
‖ϕ(g)‖2

)
≈ N

(
−1

2

(
5

n

)
,
5

n

)
Finally then,

G = ln

(
1

n

∥∥gd∥∥2)+

d−1∑
`=0

ln

(
2

n

∥∥ϕ(g`)∥∥2)

≈ N
(
−1

2

(
2

n

)
,
2

n

)
+

d−1∑
`=0

N
(
−1

2

(
5

n

)
,
5

n

)
≈ N

(
−1

2
β, β

)
where β =

2

n
+ 5

d

n

3 Detailed proof

3.1 Behavior of ‖g‖2 and ‖ϕ(g)‖2

Remark. ‖g‖2 d
= χ2

n is a Chi-squred distribution with n degrees of freedom. Similarly, since ϕ(g)2i = g2i 1 {gi > 0}
and since 1 {gi > 0} is a Bernoulli random variable which is independent of g2i , we see that ‖ϕ(g)‖2

d
= χ2

Bin(n, 12 )
is

a Chi-squared distribution with a number of degrees of freedom which is an independent Binomial(n, 12 ) random
variable. These observations can be used to prove the results in this section, but the proofs below are self contained
and just use the fact that ‖g‖2 and ‖ϕ(g)‖2 are sums of n simple independent random variables.

1For our result, we actually only need the mean and variance of each term and that each term is concentrated around its mean,

but the Gaussian approximation is an intuitive way to understand what's going on here. These approximations hold because ‖g‖2 and

‖ϕ(g)‖2 can be written as sums over the n independent components of the vectors. The next section has detailed proofs of what we

precisly need.
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Proposition 3. Let g ∈ Rn be a Gaussian vector with iid N (0, 1) entries. 1
n ‖g‖

2 ≈ N (1, 2
n ) in the sense that the

following properties hold as n→∞ 2

i) E
[
1
n ‖g‖

2
]
= 1

ii) Var
[
1
n ‖g‖

2
]
= 2

n

iii)
√
n
(

1
n ‖g‖

2 − 1
)
⇒ N (0, 2) as n→∞.

iv) E

[(
1
n ‖g‖

2 − 1
)3]

= O
(

1
n2

)
and for p ≥ 2 E

[(
1
n ‖g‖

2 − 1
)2p]

= O
(

1
np

)
Proof. All these facts are consequences of the fact that 1

n ‖g‖
2
= 1

n

∑n
i=1 g

2
i is an average of n independent random

variables. i) and ii) then follow since E
[
g2i
]
= 1 and E

[
g4i
]
= 3. iii) can then be deduced from the central limit

theorem. iv) This is a standard moment estimate which is sometimes proven in the moment method proof of the

CLT. Notice that 1
n ‖g‖

2 − 1 = 1
n

∑n
i=1

(
g2i − 1

)
is an average of independent mean zero quantities that have �nite

moments of all order. Hence, E
(

1
n ‖g‖

2 − 1
)3

= 1
n2E

[(
g2i − 1

)3]
since all the cross terms in the expansion vanish

leaving only the diagonal terms. Similar cancellations occur in the higher moments to give the bound for the 2p-th
moment.

Proposition 4. Let g ∈ Rn be a Gaussian vector with iid N (0, 1) entries. The approximations 2
n ‖ϕ(g)‖

2 ≈ N (1, 5
n )

holds in the following precise senses

i) E
[
2
n ‖ϕ(g)‖

2
]
= 1

ii) Var
[
2
n ‖ϕ(g)‖

2
]
= 5

n

iii)
√
n
(

2
n ‖ϕ(g)‖

2 − 1
)
⇒ N (0, 5) as n→∞.

iv) E

[(
1
n ‖ϕ (g)‖2 − 1

)3]
= O

(
1
n2

)
and for p ≥ 2 E

[(
1
n ‖ϕ (g)‖2 − 1

)2p]
= O

(
1
np

)
Proof. As in the previous result, this is a consequence of the fact that we average iid random variables, 2

n ‖ϕ(g)‖
2
=

1
n

∑n
i=1 g

2
i 21 {gi > 0}. Note additionally that g2i is independent of 1 {gi > 0} since gi is symmetrically distributed

which allows us to compute directly. i) and ii) follow since E
[
g2i 21 {gi > 0}

]
= 1·2· 12 and E

[(
g2i
)2

(21 {gi > 0})2
]
=

3 · 4 · 12 = 6.iii) follows by the application of the central limit theorem. iv) Follows again by the same argument as
the previous lemma.

3.2 Behavior of ln(‖g‖2) and ln
(
‖ϕ(g)‖2

)
Proposition 5. ln

(
1
n ‖g‖

2
)

obeys i) E
[
ln
(

1
n ‖g‖

2
)]

= − 1
2

(
2
n

)
+ O

(
1
n2

)
, ii) Var

[
ln
(

1
n ‖g‖

2
)]

= 2
n + O

(
1
n2

)
,

iii) E

[(
ln
(

1
n ‖g‖

2
)
−E

[
ln
(

1
n ‖g‖

2
)])4]

= O
(

1
n2

)
Similarly ln

(
1
n ‖ϕ (g)‖2

)
obeys i) E

[
ln
(

1
n ‖ϕ (g)‖2

)]
= − 1

2

(
5
n

)
+ O

(
1
n2

)
, ii) Var

[
ln
(

1
n ‖ϕ (g)‖2

)]
= 5

n +

O
(

1
n2

)
, iii) E

[(
ln
(

1
n ‖ϕ (g)‖2

)
−E

[
ln
(

1
n ‖ϕ (g)‖2

)])4]
= O

(
1
n2

)
Proof. This follows by doing the Taylor series ln(1+x) = x− 1

2x
2+ 1

3x
3− 1

4x
4+O(x5) and plugging in x = 1

n ‖g‖
2−1

to obtain an approximation for ln
(

1
n ‖g‖

2
)
. Speci�cally, by Chebyshev inequaltiy we know that

∣∣∣ 1n ‖g‖2 − 1
∣∣∣ =

O
(
n−

1
2+ε
)
with probability at least 1 − nε. On this event, the Taylor series expansion yields an error of no more

that O
(
n−

5
2+5ε

)
. The result follows by taking E and Var and using the bounds from the previous lemma to control

all the higher order terms that appear.

2Note that ‖g‖2 is a χ2
n distribution, so these are properties which one can look up. However, we give an elementary proof here.

5



3.3 Lindeberg CLT

By the work in the proof sketch section, all we have to do is apply a central limit theorem to the sum

G = ln

(∥∥gd∥∥2
n

)
+

d−1∑
`=0

ln

(∥∥ϕ (g`)∥∥2
n

)

Since all the variables are independent, the terms of the sum form a triangular array of independent random
variables. The mean and variance are as claimed by the previous mean and variance calculations. The Lindeberg
CLT will then tell us that G converges to a Gaussian as claimed. The Lyapanov condition for the Lindeberg CLT
for the 4th moment is veri�ed by our previous inequalities.
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