Ab initio Investigations into the Geometry and Electronic Excitations of

Novel Ruthenium Chloride Clusters

by

Alexander George Boncheff

A Thesis presented to The University of Guelph

In partial fulfillment of requirements for the degree of Master of Science in Chemistry

Guelph, Ontario, Canada

© Alexander George Boncheff, November, 2011

ABSTRACT

Ab initio INVESTIGATIONS INTO THE GEOMETRY AND ELECTRONIC EXCITATIONS OF NOVEL RUTHENIUM CHLORIDE CLUSTERS

Alexander George Boncheff University of Guelph, 2011 Advisor: Professor Mario Monteiro

In efforts to coordinate carbohydrates to transition metal centres, the coordination of D-(+)-Glucosamine to ruthenium was performed. The product from this reaction was a vibrant blue substance that degraded in a characteristic fashion of blue to green to yellow, indistinguishable to that of the ruthenium coordination precursor "Ruthenium Blue". The MALDI-ToF-MS spectra of the blue product and subsequent green and yellow degradation products showed the presence of a series of [Ru_xCl_y]⁻ ruthenium chloride clusters. Structures of the clusters and their respective electronic excitations were determined using *ab initio* calculations. Calculations were performed using Density Functional Theory and the CIE1931 colour metric was used to process the electronic excitations into a physically perceived colour. The optimized structures that resulted from the *ab initio* calculations had the same physically perceived colour as the species found in the product, and thus could be another possibility into the composition of "Ruthenium Blue".

TABLE OF CONTENTS

<u>List</u>	List of Figures				
<u>List</u>	of Tables	vii			
Chapter 1: Introduction					
1.1	Motivation	2			
1.2	Bacterial Polysaccharides	3			
1.3	Coordination of Monosaccharides to Ruthenium	12			
1.4	Insight into the Composition of Ruthenium Blue	13			
1.5	The CIE1931 Colour Metric	16			
1.6	Overview of Research Project	21			
Chapter 2: Experimental					
2.1	Synthetic Strategy	25			
2.2	Computational Strategy	25			
2.3	Synthesis of Blue Compound	27			
2.4	Ab initio calculations on Ruthenium Chloride clusters	28			
2.5	Processing of Electronic Excitations into UV/Vis spectra	28			
2.6	Methods for Mass spectrometry of Ruthenium Chloride clusters	36			

Chapter 3: Results and Discussion		
3.1	Ruthenium Blue Compound	38
	3.1.1 Mass Spectrometry results of Blue Compound	39
3.2	Ab initio results on Ruthenium Chloride clusters	45
3.3	Calculated Electronic Excitation Spectra of Ruthenium Chloride Clusters	52
3.4	Calculated Electronic Excitation Spectra of the Blue Compound	57
3.5	Calculated Electronic Excitation Spectra of other Ruthenium Halides	60
<u>Cha</u>	pter 4: Conclusions and Future Work	63
<u>Cha</u> <u>Cha</u>	upter 4: Conclusions and Future Work	63 68
<u>Cha</u> <u>Cha</u>	upter 4: Conclusions and Future Work	63 68 72
<u>Cha</u> <u>Cha</u> <u>Cha</u> 6.1	apter 4: Conclusions and Future Work apter 5: References apter 6: Appendix Input Files for the TDDFT Calculations of the Ruthenium Chloride Clusters	63 68 72 73
<u>Cha</u> <u>Cha</u> 6.1 6.2	Input Files for the TDDFT Calculations of the Ruthenium Chloride Clusters Cartesian Coordinates of Geometry Optimized Ruthenium Chloride Clusters	63 68 72 73 81

LIST OF FIGURES

- **Figure 1** The structure of the Lipopolysaccharide
- **Figure 2** Methods for Structural Characterization of Complex Bacterial Polysaccharides
- Figure 3 A Carbohydrate Chain Showing the Glycosidic Linkages
- **Figure 4** Structure of the $[Ru_5CI_{12}]^2$ anion proposed by Rose and Wilkinson. (1970)
- **Figure 5** Structure of $[Ru_3CI_{12}]^4$ cluster by Bino and Cotton
- **Figure 6** The 1931 CIE Standard Observer RGB Colour Matching Functions
- **Figure 7** Matrix Transformation to Convert the CIE1931 RGB Colour Matching Functions into the CIE1931 XYZ Colour Matching Functions
- **Figure 8** The 1931 CIE Standard Observer XYZ Colour Matching Functions
- Figure 9 The CIE1931 Colour Space
- **Figure 10** Flowchart of the methodology for calculating the perceived physical colour of the ruthenium chloride clusters
- **Figure 11** Example of Inversion and normalization of electronic excitation spectra using the spectrum of [Ru₂Cl₆]⁻
- **Figure 12** Conversion Function for Inversion of the UV/Vis spectrum
- Figure 13 Code for Determining the Maximum Value of a Series of Data Points
- Figure 14 CIE1931 Colour Matching Functions
- **Figure 15** Functional for Obtaining the Tristimulus Values from Integration of the Inverted Absorption Spectrum with the CIE1931 Colour Matching Functions from Beck
- **Figure 16** Normalization function of the Tristimulus Values into Chromacity Coordinates for x and y respectively

- Figure 17 CIE1931 Colour Space Metric
- **Figure 18** Solutions of the blue compound at various stages of decomposition. a) blue, b) green c) yellow
- **Figure 19** *LDI-ToF-MS of* $RuCl_3$ ·3 H_2O
- **Figure 20** MALDI-ToF-MS spectra of the Blue Compound at the blue degradation stage. Negative mode
- **Figure 21** MALDI-ToF-MS spectra of the Blue Compound at the green degradation stage. Negative mode
- **Figure 22** MALDI-ToF-MS spectra of the Blue Compound at the yellow degradation stage. Negative mode
- **Figure 23** Experimental (top,blue) and Calculated (bottom, orange) Mass Spectrum Profile of [Ru₂Cl₆]⁻
- **Figure 24** Experimental (top,blue) and Calculated (bottom, orange) Mass Spectrum Profile of [Ru₃Cl₉]⁻
- Figure 25 Structures of the Ruthenium Chloride Clusters
- Figure 26 UV/Vis spectra of Ruthenium Chloride Clusters. (a) [RuCl₄]⁻, (b) [RuCl₅]⁻, (c) [Ru₂Cl₀]⁻, (d) [Ru₂Cl₇]⁻, (e) [Ru₃Cl₀]⁻, (f) [Ru₃Cl₀]⁻, (g) [Ru₄Cl₁₁]⁻, (h) [Ru₅Cl₁₂]⁻
- **Figure 27** Plot of Chromacity Coordinates of the Clusters on the CIE1931 Gamut
- Figure 28 Calculated UV/Vis spectra of the Solutions. (a) Blue and (b) Yellow
- Figure 29 Plot of Chromacity Coordinates of the Blue and Yellow Solutions on the CIE1931 Gamut
- **Figure 30** UV/Vis absorption spectra of a) RuF_4 b) $RuCl_3$ c) $RuBr_3$
- **Figure 31** *RuF*₄, *RuCl*₃, *RuBr*₃ plotted on CIE1931 Colour Space
- **Figure 32** UV/Vis spectrum of the Blue Solution with the Contribution from $[Ru_4CI_{11}]$ highlighted

LIST OF TABLES

- **Table 1** List of NMR Experiments Used in the Structural Determination of Polysaccharides
- Table 2 Composition of the Blue Compound at Various Colours
- Table 3 CIE1931 Chromacity Coordinates for the Ruthenium Chloride Clusters
- Table 4 CIE1931 Chromacity Coordinates of the Solutions

Chapter 1: Introduction

1.1 Motivation

Our research focuses on the composition analysis and structural characterization of complex bacterial polysaccharides (PSs). These polysaccharides are highly specific macromolecules that are expressed on the surface of the bacterial cell wall. They are typically comprised of a repeating oligosaccharide unit and are on average 10 repeat units long. The reason for interest in the bacterial PSs is due to the antigenic properties and immunostimulant effects from from these macromolecules which is used in the development of vaccine and drug design. However a full structural and conformational determination must be obtained for research to begin on drug design and vaccine development based on these bacterial PSs. The structural characterization of the polysaccharides is not a trivial process and involves interpreting various convoluted spectra across various analytical methods. In searching for alternative methods, it was thought that by coordinating the hydroxyl or amine moieties of the sugars to metal centres, the spectra used for structural characterization could be simplified making the process easier.

1.2 **Bacterial Polysaccharides**

Bacteria have the ability of building and expressing polysaccharides on the surface of the cell to suit a variety of functions. Bacterial PSs can be found in various parts of the cell surface and outer membranes such as the peptidoglycan cell wall, the lipopolysaccharide (LPS) layer and bacterial capsule. The LPS and capsule of bacteria are the macromolecules of interest to vaccine and drug development as they have the antigenic and endotoxic properties that "make people sick". These bacterial polysaccharides are also highly specific and are divided down into strains with certain bacterial species having the number of strains reach into the hundreds. As a result conformational studies are also useful in determining whether or not cross-reactivity between polysaccharides from separate bacterial strains exist, allowing us to develop drugs or vaccines that can be effective across multiple strains of the same bacterial species.

The lipopolysaccharide (LPS) is found on the outer membrane of Gramnegative bacteria and is made up of 3 components: Lipid A, Core and O-Antigen. The a drawn example of the LPS showing the arrangement of the structures is depicted in *Figure 1.* Figure 1 – The structure of the Lipopolysaccharide^[1]

The Lipid A is a glycolipid macromolecule that anchors of the LPS to the outer lipid membrane of a Gram-negative bacteria. The Lipid A is also a powerful endotoxin and immunostimulator and it's effects are implicated in the onset of a Gram-negative bacterial infection. The adjacent structure is the Core which is an oligosaccharide unit that is primarily structural and often contains non-carbohydrate moieties which are necessary for the proper function of the bacterial cell^[2]. The Core generally does not have immunostimulatory properties and is not of interest for vaccine or drug development. Our main interest however is in the O-Antigen component. The O-Antigen of the LPS is the macromolecule that we study for structural characterization. O-Antigens, as their name suggests, have immunostimulant properties and are important in antibody recognition of invading bacterial cells. The general composition of the O-Antigen varies widely from bacterial species to species and from specific strain to strain^[3]. As mentioned before, cross-reactivity can be determined between between certain strains of bacteria which allows for the development of multi-valent vaccines.

Certain bacterial species can also produce a bacterial capsule that is expressed as a very loose and jelly-like coating on the outside of the bacterial cell. The capsule is composed of linear branches of polysaccharides with a repeating unit of generally one to six monosaccharides. The capsule protects the bacteria from the immune system by "cloaking" the antigenic sites and preventing antibody recognition of cell surface antigens^[4]. Should the bacteria eventually get tagged by the immune system, the jelly-like physical nature of the capsule can be use by the bacteria to "slip away" before being engulfed by the phagocyte. With these properties the sugars present in the bacterial capsule can also be used for vaccine development to protect against infection.

Structural characterization of a PS is a long and time consuming process that is often the main component of a graduate research project. As seen in *Figure 2*, various methods of chemical analysis must be used together in tandem for the full structural characterization. The process for PS characterization starts with a sugar composition analysis to determine the individual monosaccharide units that make up the macromolecule. Using GC-MS and the Alditol Acetate procedure^[5] for carbohydrates, signature fragmentation patterns of known monosaccharide standards are compared to those separated by the GC-MS. The next step is to determine the glycosidic linkages and their positions through Partially Methylated Alditol Acetate experiments and GC-MS^[6]. At this point we have a knowledge of glycosidic linkage sites for the monosaccharides of the PS and a crude chain of the PS can be determined. Determining the anomeric conformation of the monosaccharide units gives us information on the overall structure of the entire PS. Various Nuclear Magnetic Resonance (NMR) experiments need to be performed in order to get a picture of the entire conformation of the PS. Conformational analysis starts with 1D ¹H-NMR which gives information on the presence of alpha- and beta-conformation monosaccharides as well as the chemical shift of the ring protons of the monosaccharide units. A list of the 2D NMR experiments that are used and what information is determined from the resulting spectra are listed below in Table 1.

Table 1 – List of NMR Experiments Used in the Structural Determination of Polysaccharides^[7]

List of Experiments	Information Obtained	
Correlation spectroscopy (COSY)	Able to correlate ¹ H- ¹ H nuclei that are J- coupled to each other. Contains information about dihedral angles	
Total correlation spectroscopy (TOCSY)	Able to correlate a protons that are spin coupled together in a spin system. For carbohydrates a spin system constitutes an individual monosaccharide. Able to differentiate protons within a monosaccharide unit.	
Heteronuclear single-quantum correlation spectroscopy (HSQC)	Able to correlate individual heteronuclear- ¹ H nuclei through a single bond. Useful for determining bonding between protons and heteronuclei	
Heteronuclear multiple-bond correlation spectroscopy (HMBC)	Able to correlate individual heteronuclear- ¹ H nuclei over a longer range than HSQC, typically over 2-4 bonds.	
Nuclear Overhauser effect spectroscopy (NOESY)	Able to correlate ¹ H- ¹ H nuclei through space, typically across 2-4Å. Useful in determining conformational shape of the polysaccharide.	

Figure 2 – Methods for Structural Characterization of Complex Bacterial Polysaccharides

One can see that the structural characterization process for determining the structure of carbohydrates is not a trivial process given how many experiments and spectra need to be analyzed in tandem. An easy method for bypassing spectroscopic determination would be to employ x-ray crystallography similar to that used for protein analysis. However x-ray crystallography is generally not possible for carbohydrates for good reason. Within the polysaccharide, the glycosidic bonds of the carbohydrate chain are very flexible and have a high degree of rotation. A polysaccharide chain contains three types of glycosidic bonds that can rotate:

C-C-O-C, C-O-C-C and O-C-O-C (present only in 1-6 linkages) which are denoted as ϕ , ψ and ω respectively^[8]. These degrees of rotation can be seen in *Figure 3*.

Figure 3 – A Carbohydrate Chain Showing the Glycosidic Linkages.^[8]

This high degree of mobility of the glycosidic bonds prevents the carbohydrate from being successfully crystallized for x-ray crystallography as compared to protein structures. As a result structural characterization and conformation must be determined via mass spectrometry and nuclear magnetic resonance (NMR) experiments. We envisaged that the coordination of the PSs to ruthenium, through amine and hydroxyl moieties, may help us obtain less convoluted NMR spectra of the PSs though downshifting of the chemical shift of the coordinating atoms. Additionally, higher resolution of the spectra could be obtained due to decreased flexibility and rotation of the polysaccharide would

promote the possibility of yielding compounds suitable for crystallographic analysis.

The coordination of monosaccharide units to transition metals, especially those of the platinum group, is well-documented in the literature^{[9],[10]}. X-ray crystal structures have also been obtained from the products formed in the coordination reactions. Other investigations into the mechanisms of coordination, with full characterization of the resulting products, have also been carried out with metals such as iron^[11], platinum^[12], palladium^[12], and copper^[13]. X-ray crystallography and spectroscopic data has demonstrated that monosaccharides coordinate to the metal through vicinal hydroxyl or amine functional groups. While there are no literature examples of the coordination of monosaccharide carbohydrates to ruthenium, it has been shown that other platinum group metals have been successful and thus ruthenium coordination should be similar. If coordination of monosaccharides to ruthenium proved to be successful, then successive studies into the coordination of the full bacterial polysaccharide to ruthenium would then be investigated. Due to the relatively high monetary cost of obtaining bacterial polysaccharides, ruthenium was chosen as the coordination centre in order to maintain cost-effectiveness of this study as it is the cheapest of the platinum group metals at the time of publication.

1.3 <u>Coordination of Monosaccharides to Ruthenium</u>

Our first investigations into the coordination of polysaccharides to transition metals involved reacting D-(+)-Glucosamine with RuCl₃·3H₂O. Glucosamine was used as the monosaccharide of choice due to the presence of the amine moiety which is common to the PSs within our field of research. Using glucosamine would have also given insight into bonding preference to ruthenium through vicinal amine-hydroxyl or vicinal hydroxyl-hydroxyl groups. The method of coordination was to use the coordination precursor "Ruthenium Blue" to synthesize a monosaccharide-ruthenium complex. From this reaction, a product that was moderately air and water stable was isolated as an intense blue solid. The colour of the product in solution was visually similar to that of original coordination precursor Ruthenium Blue.

Ruthenium Blue is a versatile starting material for creating ruthenium coordination complexes^[14]. G. Wilkinson showed that a wide variety of complexes can be formed by the simple addition of a ligand to an aqueous solution of Ruthenium Blue. Throughout the literature various methods exist for the synthesis of Ruthenium Blue. Rose and Wilkinson used a hydrogen/platinum reduction in ethanol^[15] while Mercer and Dumas used an acidic solution of Potassium Ruthenium Chloride and reduction using electrochemistry to produce the vibrant blue solution^[16]. A much simpler method for obtaining Ruthenium Blue,

taken from Togano et al., can be made by refluxing RuCl₃·3H₂O in ethanol under an inert atmosphere^[17]. The progress of the synthesis can be tracked by the signature colour change from the original yellow/brown of RuCl₃·3H₂O solution, to green, to the final blue colour. This colour change takes place over approximately 5-6 hours. If exposed to air the Ruthenium Blue solution degrades within minutes to the original green colour followed by the original yellow colour 90 minutes later. This high level of air sensitivity makes studying Ruthenium Blue cumbersome via commonly used analytical techniques. The colour changes seen in the solutions of Ruthenium Blue upon exposure to air are also seen in the formation and degradation of the blue compound formed from RuCl₃·3H₂O and D-(+)-Glucosamine, but the degradation is slower (approximately 7 days).

1.4 Insight into the Composition of Ruthenium Blue

Since the discovery of Ruthenium Blue, various literature reports on the composition of the vibrant blue solution have been proposed. These reports describe a wide range of possibilities and conclusions, ranging from single species^[18] to multispecies solutions^[15], ionic (both positive^[16] and negatively^[18] charged) and neutral species. Additionally, the studies report ruthenium in varying oxidation states from +4 to +2 oxidation state with +4 and +2 being the most commonly reported. As well a wide range of analytical techniques such as chromatography, voltammetry, X-ray crystallography with co-compounds for

assisting in crystalization and various methods of mass spectrometry have been employed to determine the structure of Ruthenium Blue.

A few of the notable reported results are as follows. In 1970, Rose and Wilkinson published results reporting a $[Ru_5CI_{12}]^{-2}$ cluster with varying oxidation states for ruthenium ranging from +4 to +2^[15]. $[Ru_5CI_{12}]^{-2}$ was isolated as a deep blue salt with (*o*-phenylenedimethylene) bis(triphenylphosphonium) as a counterion. Elemental analysis and x-ray powder diffraction was used to determine the composition and structure, shown in *Figure 4*.

Figure 4 – Structure of the [Ru₅Cl₁₂]⁻² anion proposed by Rose and Wilkinson.

(1970)

In 1971 Mercer and Dumas studied the composition of Ruthenium Blue synthesized via electrochemical reduction of potassium ruthenium chloride^[16]. They reported that their Ruthenium Blue contains a series of [Ru₂Cl₃]^{+2,3}, [Ru₂Cl₄]^{+1,2} and [Ru₂Cl₅]^{0,+} species with the ruthenium atoms existing in various oxidation states. This was determined through potentiometric titrations, UV/Vis and ESR spectroscopic studies and electrochemical oxidations. No conclusive structure was given in the study, but it was proposed that a possible species in the Ruthenium Blue solution was a "tri-µ-chloro bridged ruthenium complex in octahedral configuration with aqua ligands filling the remaining coordination sites".

The last notable study performed on the composition of Ruthenium Blue was carried out in 1980 by Bino and Cotton^[18]. The authors proposed that Ruthenium Blue was composed of a $[Ru_3Cl_{12}]^{-4}$ species. This was inferred from xray crystallographic data of a blue precipitate that formed when adding $(C_2H_5)_4NCl$ to a solution of Ruthenium Blue. While an x-ray crystal was solved from the solution of Ruthenium Blue, the study concluded saying that the $[Ru_3Cl_{12}]^{-4}$ structure was not the final conclusion on the composition of Ruthenium Blue. The structure of the $[Ru_3Cl_{12}]^{-4}$ species is see in *Figure 5*.

Obviously these studies do not agree on the composition of Ruthenium Blue. From the experiments presented in this thesis, it is thought that the species present in the negative-mode MALDI-ToF-MS of the blue compound are another possibility in identifying the species that make up Ruthenium Blue. The higher stability of the chemical species in the blue compound as compared to a solution of Ruthenium Blue is thought to arise from the reducing character of D-(+)-Glucosamine.

1.5 The CIE1931 Colour Metric

Human physiological interpretation of any sort of stimuli is inherently difficult to measure and quantify. The International Commission on Illumination (CIE) is the international body that standardizes the field of colorimetry and provides mathematical methods for interpreting and understanding the science of colour^[19]. One of the first standard metrics of the physical interpretation of colour was developed in 1931 known as the CIE1931 XYZ Colour Space. This colour space was derived from a series of experiments performed by J. Guild^[20]. Human vision is perceived through photoreceptors known as cone cells, of which we have three specific kinds that have peak sensitivities in specific areas of the visible spectrum. One set of cone cells detect light primarily in the blue region of the visible spectrum with the other sets detecting primarily in the green and red regions^[21]. There is no set specific detection range of colour that is universal across humans since colour sensation is highly dependent on physical factors both directly and indirectly related to the eye of the observer. Since human eyes can only physically see the three primary colours of blue, green and red (from which colour addition processing from the brain makes up the rest of the colours), only three colour metrics are needed for mathematically determining colour perception^[21].

Experiments were performed in order to determine the required amount of stimulus for each set cone cells in order to perceive a specific wavelength of light. Experiments by Guild involved setting up an observer at a station that showed light from a monochromator and from a tricolour red-blue-green source. At this station an operator would select light from a monochromator and the test subject would match the colour from the red-blue-green tricolour source by adjusting the brightness of the individual colours. Colours were matched in 5 nm increments starting from 780 nm and ending at 380 nm. What was seen from this experiment was that a specific brightness of the individual red-blue-green colours was used to generate the specific colour response across the visual spectrum.

This metric became known as the 1931 CIE Standard Observer RGB Colour Matching Functions. These RGB Colour Matching Functions can be see in *Figure 6*.

Figure 6 – The 1931 CIE Standard Observer RGB Colour Matching Functions

 λ (nm)

While these RGB Colour Matching Functions were sufficient in describing the stimulus needed for reproducing a particular colour standard using a tricolour experimental colour, limitations for universal theoretical use still existed. The individual Colour Matching Functions needed to be normalized with each other. Additionally elimination of the negative regions of the Colour Matching Function, an artifact from needing to add a portion of particular colour to the standard test colour as opposed to the experimental colour, was needed as negative numbers were difficult to process during the time of development. As a result a matrix transformation for the functions to be useful was experimentally determined. The matrix is seen in *Figure 7*.

Figure 7 – Matrix Transformation to Convert the CIE1931 RGB Colour Matching Functions into the CIE1931 XYZ Colour Matching Functions

X	2.768892	1.751748	1.130160	R
Y =	1.000000	4.590700	0.060100	$\cdot _G$
Z	0	0.056508	5.594292	B

Thus this matrix conversion allows for the Colour Matching Functions to be of isoenergetic in their intensities and elimination of the negative portion of the Colour Matching Functions. The resulting Colour Matching Functions, the CIE1931 XYZ Colour Matching Functions are seen in *Figure 8*.

The creation of the CIE1931 Colour Space and resulting metric involved development and refinement that spans across the late 19th century to the early 20th century involving work from the fields of mathematics and optics. The theory behind the CIE1931 Colour Space, seen in *Figure 9*, is beyond the scope of this thesis and is not described here.

Figure 9 – The CIE1931 Colour Space^[19]

1.6 Overview of Research Project

It has been reported previously in the literature that the colour perception of various organic chemical indicators can be determined from their experimental UV/Vis absorption spectra. Work done by Mortimer and Varley showed that the UV/Vis spectra of these organic indicators could be plotted on the International Commission on Illumination CIE1931 colour space from experimental data

obtained from a spectrophotometer^[22]. By using the International Commission on Illumination mathematical methods for interpreting colour, Mortimer and Varley showed that using a simple spreadsheet program, a UV/Vis spectra as a series of data points can be processed to the respective colour space coordinates and thus plotted on CIE1931 colour space in order to determine the perceived colour.

From a more theoretical study, Beck showed that the physically perceived colour of 8 of 9 dyes could be successfully predicted from TD-DFT generated electronic excitation spectra using a Becke-Perdew combination of functionals and a TZVP basis set^[23]. The single unsuccessful outlier was Malachite Green where the $0\rightarrow 1$ and $0\rightarrow 2$ transitions were blue and red-shifted respectively. The work done by these researchers showed that the ability to successfully predict the physically perceived colour of organic compounds is possible both experimentally and theoretically from *ab initio* calculations. Thus it was envisioned that this method of converting a UV/Vis spectra into CIE1931 colour space coordinates could also be applied to electronic excitation calculations of the ruthenium chloride clusters.

The purpose of the work described in this thesis is to determine the chemical formula of the species present in the MALDI-ToF-MS negative mode spectrum of the product formed from boiling RuCl₃·3H₂O and D-(+)-Glucosamine in ethanol. On the identified species, *ab initio* calculations are performed to

determine the molecular geometry and electronic excitation spectra in order to predict the visible colour change as the product degrades from blue to green to yellow.

Chapter 2: <u>Experimental</u>

2.1 Synthetic Methods

In order to coordinate D-(+)-Glucosamine to a ruthenium centre, a good ruthenium precursor was needed. This precursor needed be readily accessable, highly robust for coordination and low solvent toxicity. Ruthenium Blue fits these characteristics and was used as the coordination precursor of choice. The synthesis of Ruthenium Blue was taken from the work published by Togano et al. ^[17] The procedure called for refluxing RuCl₃·3H₂O with ethanol under an inert atmosphere for approximately 5-6 hours. Completion of the reaction is indicated when the solution changes from yellow/brown to green and finally a notably vibrant blue.

2.2 <u>Computational Methods</u>

As with all computational studies, the decision of the basis set and method used for the calculations a comprimise between computational time and basis set accuracy. A "first-pass" optimization of the rationally designed input structures was performed using the Slater-type Orbital basis set of STO-3G in order to refine the structures for higher level calculations^[24]. Slater-type orbitals are notorious for being highly inaccurate in proper modelling of the molecular orbitals of a chemical species. Hence normal termination was occasionally difficult to achieve, either through convergence failures of the Self-Consistant Field steps of

the calculations or through the optimization procedure being unable to find a stationary point. In these cases energy shifting of the molecular orbitals through the keyword "scf=vshift" or lowering the points per atom of the integral grid using the keyword "Int=(CoarseGrid)".

As Slater-type orbitals are unacceptably inaccurate for publication a higher level of theory is needed for accurate results. A combination basis set was employed to use effective core potentials (ECP) on the ruthenium atoms, while using a non-ECP basis set on the chlorine atoms. The doublet-zeta Stuttgart/Dresden (SDD)^[25] basis set was used for the ruthenium atoms while a Pople basis set of 6-311G(2d)^[26] was used on the chlorine atoms. As the colours were determined as a solution, it was necessary to include solvent effects for the calculations. All calculations were performed using a Polarizable Continuum Model (PCM)^[27] in order to reproduce this while the solvent model used was water. While using water may seem unusual as the Ruthenium Blue already is present in a solvent of ethanol, samples used for colour determination had the ethanol stripped and replaced with water so that the solution would not dry out within hours.

The method of choice for calculating the geometry and electronic excitations of the clusters was Density Functional Theory (DFT). DFT was chosen over other methods such as Møller–Plesset perturbation theory for

geometry optimizations or CCS(D) and CIS for the electronic excitations due to previously seen investigations into geometry optimization and electronic excitations using DFT and Time-Dependent DFT (TDDFT) for transition metal species. Also the uniformity of using Density Functional Theory for all calculations of the study of the ruthenium chloride clusters was considered necessary.

GaussView5 is not capable of making reliable predictions for the bonding of the optimized ruthenium chloride clusters. As a result bonding information was obtained from the molecular orbital overlap information from the output file of the optimization. The program AOMix developed by Gorelski^{[28],[29]} was used to determine the proper bonding of the clusters using Natural Bonding Overlap (NBO) analysis.

2.3 <u>Synthesis of the Blue Compound</u>

The synthesis of the blue compound was performed by reacting 50 mg of D-(+)-Glucosamine with 1 equivalent of $RuCI_3 \cdot 3H_2O$ (*calc. 73mg*). Using 95% ethanol as a solvent and under an inert atmosphere of argon, the solution of glucosamine and ruthenium was heated to reflux for 12 hours. The solvent was evapourated off affording a deep blue solid. $RuCI_3 \cdot 3H_2O$ was obtained from Pressure Chemicals and D-(+)-Glucosamine was obtained from Sigma-Aldrich.

2.4 <u>Ab initio calculations on Ruthenium Chloride clusters</u>

All *ab initio* calculations were performed using Gaussian09 Rev. A.02^[30]. Calculations were performed using the Density Functional Theory method with the PBE0 functional and a combination basis set of SDD for Ru atoms and 6-311G(2d) for Cl atoms. Vibrational frequency analysis was performed on all optimizations to ensure a true ground state geometry was obtained. TD-DFT calculations were performed to obtain the electronic excitation energies of all reported clusters. Stability tests were performed on all clusters to ensure ground electronic state was used for input into TD-DFT calculations. Geometry optimizations, frequency and TD-DFT calculations were performed with a Polarizable Continuum Model solvent system for water.

2.5 Processing of Electronic Excitations into UV/Vis spectra

UV/Vis spectra of the clusters were generated using a Half-Width, Half-Height of 0.305 eV. CIE1931 (x,y) chromacity coordinates were generated using the program *Calc* from the *OpenOffice* suite of programs^[31]. The methodology for the generation of the CIE1931 colour space chromacity coordinates for the clusters is shown in *Figure 10*.

Figure 10 – Flowchart of the methodology for calculating the perceived physical colour of the ruthenium chloride clusters

A walkthrough of *Figure 10* is as follows: TD-DFT calculations of the geometry optimized clusters were performed to enough excited states to ensure that electronic excitations to at least 300 nm were obtained. The CIE1931 colour matching functions range from 780 to 380 nm, thus calculating UV/Vis spectra to 300 nm would provide a complete UV/Vis spectra of the cluster.

The next step in the conversion involves inversion of the calculated excitation spectra and normalization to 1. This is inversion/normalization is depicted in *Figure 11*.

Figure 11 – Example of Inversion and normalization of electronic excitation spectra using the spectrum of $[Ru_2Cl_6]^2$

As stated before this inversion can be performed by any standard spreadsheet program. The UV/Vis spectrum is entered into the spreadsheet as a series of *X*-*Y* points, with *X* being the wavelength and *Y* being the absorbance. To invert the *Y* values, the following conversion factor is applied see in *Figure 12*.

Figure 12 – Conversion Function for Inversion of the UV/Vis spectrum $f(x)=1-\frac{(Experimental Absorbance)}{(Maximum Absorbance Value)}$

In order to determine the maximum absorbance value, *OpenOffice* contains a specific function that can determine the maximum value in a series of data points. The specific code for this function for entry into a spreadsheet cell can be seen in *Figure 13*.

Figure 13 – Code for Determining the Maximum Value of a Series of Data Points =MAX(range1:range2)

At this stage the *X*-*Y* coordinates of the inverted spectrum are obtained. The inverse spectra is then integrated with each of the CIE1931 Colour Matching functions from 380 to 780 nm to create the CIE1931 Tristimulus Values of Red, Blue and Green. The CIE1931 Colour Matching functions are shown in *Figure 14*.

Figure 14 – CIE1931 Colour Matching Functions

nm

The mathematical equation for integrating the inverted UV/Vis spectrum with the CIE1931 Colour Matching Functions to obtain the Tristimulus values was taken from Beck's study of TD-DFT generated absorption spectra of organic dyes. The functional is shown in *Figure 15*.

Figure 15 – Functional for Obtaining the Tristimulus Values from Integration of the Inverted Absorption Spectrum with the CIE1931 Colour Matching Functions from Beck^[23]

$$X = \int_{400 nm}^{700 nm} d\lambda X(\lambda) \cdot \text{inverse_spectrum}\left(\frac{hc}{\lambda}\right)$$

Breaking down this equation we can see that obtaining the tristimulus value is just a series of multiplication steps finished by a summation. These steps are broken down as a series of steps as follows:

- Multiplying each individual point by the respective point on the colour matching function
- 2. Multiplying the product from Step 1 by the change in wavelength between the points, in this study the value is 5 nm
- 3. Summing the product of Step 2 across the entire spectrum, in this study the wavelengths considered were between 780 nm and 380 nm.

At this stage we now have the three Tristimulus values of X, Y and Z. The Tristimulus values are then summed and normalized into the Chromacity Coordinates where the X and Y values are used (Z is omitted). Normalization can be performed using the function shown in *Figure 16*.

Figure 16 – Normalization function of the Tristimulus Values into Chromacity Coordinates for *x* and *y* respectively

$$x = \frac{X}{(X+Y+Z)} \qquad \qquad y = \frac{Y}{(X+Y+Z)}$$

These points are then plotted on the CIE1931 Colour Space metric, shown in *Figure 17*, which show the physically interpreted colour.

Figure 17 – CIE1931 Colour Space Metric

Overlapping of the UV/Vis spectra of the various ruthenium chloride clusters to generate the a combined spectrum of the specific Blue, Green and Yellow solutions were simply made by determining the maximum absorbance of each wavelength and using that value for the combined spectrum. This was achieved using the =MAX(range1:range2) function seen previously in *Figure 13*.

2.6 <u>Methods for Mass spectrometry of Ruthenium Chloride clusters</u>

For MALDI-ToF-MS, RuCl₃·3H₂O was mixed directly with a matrix solution composed of 2 mg of 3,4-dihydroxy-benzoic acid in 20% of ethanol. An analyte– matrix 1:2 ratio (v/v) and 1 mL was spotted on the MALDI sample target and allowed

to dry at room temperature. For LDI-ToF-MS, a few crystals of analyte were deposited on the sample target and gently pressed toward the target. The analyses were per- formed using a MALDI-ToF-MS instrument (model Reflex III, Bruker) equipped with a 337 nm nitrogen laser. Samples were analyzed in reflectron and negative ion modes. Ion sources 1 and 2 were held at 20 and 16.35 kV, respectively. The guiding lens voltage was set at 9.75 kV. The reflector detection gain was set at 5.3 with pulsed ion extraction at 200 ns. The nitrogen laser power was set to the minimum level necessary to generate a reasonable signal and avoid possible degradation of analytes. Typically, 15% of laser energy was used, which was calculated to be 4 mJ. In the case of high laser energy experiments, 45% of laser energy was used, which equalled 12.5 mJ. The pulse duration was 9 Hz, the spot size was 2 mm, and the calculated energy density was $100 \ \mu J / 0.1 \text{mm}^2$. A two-point external calibration was performed, using the $[M - H]^{-}$ (153.01 Da) and $[2M - H]^{-2}$ (447.12 Da) peaks of dehydroxybenzoic acid and the dimer of sinapinic acid, respectively, prepared in acetonitrile-water solution (10 pmol/mL).

36

Chapter 3: <u>Results and Discussion</u>

3.1 <u>Ruthenium Blue Compound</u>

Over the 12 hours of refluxing glucosamine and ruthenium chloride, the solution progressed from the original yellow/brown colour to a green colour and lastly that of the final vibrant blue. The first colour change from yellow/brown to green becomes apparent after approximately 90 minutes of refluxing. However the second colour change of green to blue takes much longer and occurs between 10 to 12 hours from start of refluxing. The blue compound is moderately air and water stable. However when kept in solution and exposed to the ambient atmosphere, the blue colour fades to green within 3 to 4 days followed by a change from green to yellow/brown after an additional 4 to 6 days. *Figure 18* shows solutions of the blue compound at the various stages of decomposition. IR spectroscopy of the blue compound showed no evidence of remaining glucosamine while NMR experiments showed no evidence of any compound in the sample, typical of a sample containing paramagnetic species. Additionally the blue compound dissolves only in polar solvents.

Figure 18 – Solutions of the blue compound at various stages of decomposition. a) blue, b) green c) yellow

3.1.1 Mass Spectrometry results of Blue Compound

MALDI-ToF-MS experiments with the blue compound, seen in *Figure 20*, show that coordination of glucosamine to ruthenium was not achieved as there was no peak difference indicative of a 178 *m/z* glucosamine fragment. What was seen from the mass spectrum was a series of peaks between 0 and 1000 *m/z* matching the isotopic pattern of various ruthenium chloride species. Only spectra in the negative mode showed showed any sensible peaks indicative of ruthenium chloride clusters. The peaks seen in the mass spectrum of the blue compound matches that of the LDI-ToF-MS spectrum of the starting material RuCl₃·3H₂O in terms of *m/z*, however the relative abundances of the peaks between the two spectra differ. As well, the LDI-ToF-MS spectrum of RuCl₃·3H₂O shows a substantial peak at 35 *m/z* indicative of a chlorine atom. The LDI-ToF-MS of RuCl₃·3H₂O is shown in *Figure 19*^[32].

Figure 19 – LDI-ToF-MS of RuCl₃·3H₂O^[32]

However this peak at 35 *m/z* is absent in the MALDI-ToF-MS of the Blue Compound. It has been established that the ruthenium chloride clusters that were detected from the LDI-ToF-MS spectrum of RuCl₃·3H₂O were generated by the laser desorption ionization (LDI) process, a phenomena that has been reported for many transition metal elements with various coordinated ligands. However it does not seem that the ruthenium chloride clusters detected in the blue compound were generated via LDI. The three spectra in *Figure 20-22* show a gradual reduction from the larger ruthenium chloride clusters to the smallest as the product degrades. If the clusters were generated from the LDI process of the analysis, then the same number and relative abundance of the ruthenium chloride clusters would be seen across the three spectra. Since this does not occur, it is concluded that the ruthenium chloride clusters from the Blue Compound are generated in solution and not from the LDI process.

1000 [Ru4Cl11] [Ru₅Cl₁₂] 800 [Ru₃Cl₈] [Ru₃Cl₉] 600 [Ru₂Cl₇] [Ru₂Cl₆]⁻ z/u 400 [RuCl₅] [RuCl₄] 200 0 31000 24300 18600 12400 6200

Figure 20 – MALDI-ToF-MS spectra of the Blue Compound at the blue degradation stage. Negative mode

3.2 Ab initio results on Ruthenium Chloride clusters

To obtain structures for the ruthenium chloride clusters as input for DFT calculations, chemical formulas of the individual peaks were determined using the isotope profile. Since ruthenium has 7 stable isotopes, any ruthenium containing species can be identified through its unique isotopic profile. The process of identifying the ruthenium chloride clusters in the the MALDI-ToF-MS spectrum started by making a list of all the possible ruthenium chloride combinations from 0 to 1000 g/mol with the assumption that ruthenium has a maximum coordination number of six and multi-ruthenium species are present. From this list the masses of the formulas were calculated and matched against the m/z of the peaks present in the spectrum. Of those matched species, computed isotopic profiles were generated and compared to the profile of the experimental peak to determine if there is a match. With this method, only one ruthenium chloride species can be considered a match against the peaks of the experimental spectrum. An example of this comparison of the computed isotopic profile (in orange) is seen against the experimental MALDI-ToF-MS spectrum (in blue) for the clusters $[Ru_2Cl_6]^2$ and $[Ru_3Cl_9]^2$ in Figure 23 and Figure 24 respectively.

45

Figure 23 – Experimental (top,blue) and Calculated (bottom, orange) Mass Spectrum Profile of [Ru₂Cl₆]⁻

Figure 24 – Experimental (top,blue) and Calculated (bottom, orange) Mass Spectrum Profile of [Ru₃Cl₉]⁻

At this point input geometries for the *ab initio* calculations were rationally designed and drafted from the matched chemical formulas based on sensible structures that contained Ru-Cl-Ru and Ru-Ru bonds. The optimized structures were verified as minimized by vibrational analysis to ensure no imaginary vibrational frequencies existed and by testing the wavefunction stability to ensure that the geometry and multiplicity was that of the ground electronic state. Stability tests of the ruthenium chloride clusters showed that the singlet and doublet multiplicities were seldom the ground electronic state and higher multiplicities had to be used in order to obtain the true ground state. *Figure 25* shows the output of the *ab initio* calculations and the resulting final geometry of the ruthenium chloride clusters.

Figure 25 – Structures of the Ruthenium Chloride Clusters

As described above, the blue compound that was generated degrades in solution in a signature fashion, turning from it's vibrant blue to green and finally to yellow/brown. Addtionally, MALDI-ToF-MS spectra were taken of the blue compound at it's various stages of decomposition in order to determine what the chemical make up at each stage was and they are seen in Figure 20-22. We used the "blue solution" MALDI spectrum as a reference standard with no decomposition occurring. Comparison with the spectra of the "green solution" shows that there is a sharp decrease in the abundance of $[Ru_5Cl_{12}]$, $[Ru_4Cl_{11}]$, $[Ru_3Cl_9]^-$ and $[Ru_3Cl_8]^-$ with a sharp increase in the abundance of $[RuCl_4]^-$. The decomposition of a solution of the blue compound hence involves the breakdown of the larger ruthenium chloride clusters into [RuCl₄]. When comparing the spectra of the "blue solution" and "green solution" to that of the "yellow solution", the only chemical species that are still present are $[RuCl_4]^2$, $[RuCl_5]^2$ and $[Ru_2Cl_6]^2$ with chemical species peaks that are present at 195 and 170 m/z. Attempts to identify these species using the isotope profile were unsuccessful as no match to that of a ruthenium chloride cluster could be found.

The presence of the ruthenium chloride cluster species present at each colour stage is tabulated in *Table 2*.

Colour	Clusters Evident
Blue	[RuCl ₄] ⁻ > [Ru ₅ Cl ₁₂] ⁻
Green	[RuCl ₄] ⁻ > [Ru ₅ Cl ₁₂] ⁻
Yellow	[RuCl ₄] ⁻ > [Ru ₂ Cl ₆] ⁻

Table 2 – Composition of the Blue Compound at Various Colours

3.3 <u>Calculated Electronic Excitation Spectra of Ruthenium Chloride</u> <u>Clusters</u>

From the evidence presented by the MALDI-ToF-MS spectra of the blue compound showing the successive degradation of the ruthenium chloride clusters as the colour of the product changed, it was concluded that the colour of the compound was dependent on the combined absorption spectra of the individual ruthenium chloride species. Therefore by overlapping the proper combination of individual UV/Vis spectra of the ruthenium chloride clusters, it would be possible to show the colour change presented by the degradation of the blue compound. Thus UV/Vis spectra were generated for all of the reported ruthenium chloride clusters from the calculated electronic excitations. The spectra show that all clusters, except [Ru₄Cl₁₁], absorb light in the blue/violet region which would be physically perceived as yellow. The outlier $[Ru_4Cl_{11}]^{-1}$ strongly absorbs light in the orange region making it physically perceived as blue. The UV/Vis spectra of each of the reported clusters is see in Figure 26. The CIE1931 chromacity coordinates of the various solutions is seen in Table 3 and their location in colour space is seen in *Figure 27*.

nm ک

Figure 26 – UV/Vis spectra of Ruthenium Chloride Clusters. (a) $[RuCl_4]^-$, (b) $[RuCl_5]^-$, (c) $[Ru_2Cl_6]^-$, (d) $[Ru_2Cl_7]^-$, (e) $[Ru_3Cl_8]^-$, (f) $[Ru_3Cl_9]^-$, (g) $[Ru_4Cl_{11}]^-$, (h) $[Ru_5Cl_{12}]^-$

55

Cluster	CIE1931 Chromacity Coordinates		Physically Interpreted
	X	У	Colour
[Ru₅Cl ₁₂]⁻	0.351	0.370	Yellow
[Ru₄Cl₁1] ⁻	0.223	0.116	Blue
[Ru₃Cl ₉]⁻	0.369	0.381	Yellow
[Ru₃Cl ₈]⁻	0.436	0.445	Orange
[Ru ₂ Cl ₇] ⁻	0.365	0.345	Yellow
[Ru₂Cl ₆] ⁻	0.376	0.405	Yellow
[RuCl₅]⁻	0.491	0.463	Orange
[RuCl₄]⁻	0.380	0.409	Yellow

Table 3 – CIE1931 Chromacity Coordinates for the Ruthenium Chloride Clusters

Figure 27 – Plot of Chromacity Coordinates of the Clusters on the CIE1931 Gamut

3.4 <u>Calculated Electronic Excitation Spectra of the Blue Compound</u>

The yellow solution of the blue compound has a composition of the clusters $[RuCl_4]$ to $[Ru_2Cl_6]$. When overlapping their UV/Vis spectra, the resulting perceived colour was a yellow/orange and is representative of the experimental findings. When overlapping the UV/Vis spectra of the whole set of clusters from $[RuCl_4]$ to $[Ru_5Cl_{12}]$, the physically perceived colour is blue which is again representative of the experimental findings. Since the green solution of the blue compound shows the presence of all the clusters, a UV/Vis spectrum overlap for the green stage is omitted. The respective UV/Vis spectra of the various solutions is seen in *Figure 28*. The CIE1931 chromacity coordinates of the various solutions in *Figure 29*.

Figure 28 - Calculated UV/Vis spectra of the Solutions. (a) Blue and (b) Yellow

Table 4 - CIE1931 Chromacity Coordinates of the Solutions

Cluster	CIE1931 Chromacity Coordinates		Physically Interpreted
	X	У	Colour
Blue	0.255	0.167	Blue
Yellow	0.487	0.467	Yellow/Orange

Figure 29 – Plot of Chromacity Coordinates of the Blue and Yellow Solutions on the CIE1931 Gamut

3.5 - Calculated Electronic Excitation Spectra of other Ruthenium Halides

One of the ways to test the validity of this colour interpretation method is to test whether or not the colour of other know and similar in composition compounds can be predicted through the same method. Therefore a sufficient method for testing would be to determine the colour of other ruthenium halide species. Ruthenium fluoride (RuF₄), Ruthenium Chloride (RuCl₃) and Ruthenium Bromide (RuBr₃) are all known and even commercially available compounds. RuF₄ is described as a deep pink colour^[33], while RuCl₃ and RuBr₃ are both described as deep orange solids. *Figure 30* shows the calculated UV/Vis absorption spectra of the ruthenium halide compounds.

Figure 30 – UV/Vis absorption spectra of a) RuF₄ b) RuCl₃ c) RuBr₃

The absorption spectra transformed and plotted on CIE1931 Colour Space is shown in *Figure 31*.

Figure 31 – RuF₄, RuCl₃, RuBr₃ plotted on CIE1931 Colour Space

As one can see the physical colour interpretation of RuF₄ is indeed deep pink, RuCl₃ is orange and RuBr₃ is also orange. These results are in agreement with the physically perceived colour of their respective compounds. Additionally this also shows that the methods used for colour prediction extend beyond that of Ruthenium Chloride species but also into other ruthenium halide species.

Chapter 4: <u>Conclusions and Future Work</u>

The colour sequence of the Ruthenium Blue degrading from the original blue, to green and finally at yellow can be attributed to the decomposition of the $[Ru_4CI_{11}]^-$ species. With no decomposition occurring, a fresh sample of the blue substance would get the physically perceived blue hue from the compound with the highest extinction coefficient, $[Ru_4CI_{11}]^-$. The UV/Vis spectrum with the contribution from $[Ru_4CI_{11}]^-$ highlighted is seen in *Figure 32*.

Figure 32 – UV/Vis spectrum of the Blue Solution with the Contribution from $[Ru_4Cl_{11}]^-$ highlighted

As $[Ru_4Cl_{11}]^-$ begins to degrade, the yellow hues generated from the remaining clusters start to become dominant, shifting the colour from blue to yellow. In colour theory, the addition of blue to yellow produces a green. It is thought that the transitional green coloured solution is produced by "equal amounts" of blue character from $[Ru_4Cl_{11}]^-$ and yellow character from the remaining clusters. Once $[Ru_4Cl_{11}]^-$ has completely degraded the yellow character

of the other clusters become the dominant hues making the resulting solution appear as yellow. The prediction for the colour of the ruthenium chloride clusters, and those of the standards, have been remarkably accurate for the simplicity of the methodology. The findings from this project reinforces the legitimacy computational chemistry as a powerful tool for determining experimental properties to highly unusual chemical species. As stated previously the composition of the ruthenium coordination precursor Ruthenium Blue and the structure and geometry of the species present in a solution of Ruthenium Blue have never been conclusively determined. This is not surprising given the relatively high instability of Ruthenium Blue which makes any analysis cumbersome and difficult. Decomposition occurs so rapidly that it would be essential for analysis to be performed under an inert atmosphere in order to ensure a non-degraded sample. Based upon the visual characteristics of Ruthenium Blue and the synthesized blue compound from RuCl₃·3H₂O and D-(+)-Glucosamine and output generated from *ab initio* calculations, it is proposed that the clusters presented in this thesis be another possibility for the composition of Ruthenium Blue. This is the first report of using mass spectroscopy in tandem with ab initio calculations in order to determine the chemical composition of Ruthenium Blue.

The study of Ruthenium Blue and the investigations into the ruthenium chloride clusters is abundant with opportunities for further work. Reactions

65
involving ruthenium chloride with other saccharides to see if the ruthenium chloride clusters can be detected through MALDI-ToF-MS experiments can also be explored. Monosaccharides can also be further divided, testing between reducing sugars like glucose and galactose and non-reducing sugars like fructose to study the proposed stabilization of reducing sugars on the ruthenium chloride clusters. Experiments involving the use of N-acetylglucose as the monosaccharide of choice would also provide useful information specifically related to our work on bacterial PSs as a number of the polysaccharides in our research contain this monosaccharide.

From a mass spectrometry perspective, using a tandem mass spectrometer such as MALDI-ToF-MS/MS would also provide further evidence of the structure of these ruthenium chloride clusters. By being able to further fragment specific ruthenium chloride clusters, greater evidence for their structure could be obtained. It could be possible that the larger ruthenium chloride clusters would fragment specifically into the lower mass clusters of [RuCl₄]⁻ and [RuCl₅]⁻.

Lastly for experimental work, obtaining an x-ray crystallographic structure of the blue compound would definitively prove the structure and species of present in solution. Attempts were made at crystallization of the blue compound but have so far been unsuccessful. Various techniques have been employed in order to obtain crystals of the described blue compound. Non-polar solvents such as methylene chloride and petroleum ether have been used as a counter-solvent to ethanol solutions of the blue compound. Recrystallization of both diffusion and addition of a counter-solvent have both been unsuccessful in providing crystals of any quality. As well ethanol solutions of the blue compound with magnesium and calcium chloride added for positive counter ions have also been unsuccessful. It is thought that at least some, if not all the clusters, would be able to produce crystals suitable for xray crystallographic analysis.

Future work can also be carried out on the *ab initio* calculations of the ruthenium chloride clusters. With the rapid advancement of computing performance, more accurate and detailed information of the ruthenium chloride clusters can be obtained. Upgrading to an all triple-zeta basis set would be the first improvement to more accurate results. Switching from an SDD basis set on the ruthenium atoms to def2-tzvp basis set would be the way to do this. As well with the success seen in predicting the colour of the other ruthenium halide species, further discoveries could be made in seeing if a series of ruthenium halide clusters can be made from the laser desorption of RuF₄ and RuBr₃. While no supporting evidence of literature of the refluxing these ruthenium halide compounds would yield large ruthenium halide clusters, let alone colour determination of the solutions, it could definitely be another fruitful project to investigate.

67

Chapter 5: <u>References</u>

[1] Credit: Michael Jones. Picture licensed under Creative Commons Attribution-Share Alike 3.0 Unported License.

[2] Heinrichs, D. E.; Yethon, J. A.; Whitfield, C. *Molecular Microbiology* 1998, **30**(2): 221–232.

[3] Raetz, C.; Whitfield, C. Annu. Rev. Biochem. 2001, 71: 635-700.

[4] Tortora, G.J.; Funke, B.R.; Case, C.L. <u>Microbiology: An Introduction</u>. 8th ed.London: Benjamin Cummings, 2003.

[5] Blakeney, A.B.; Harris, P.J.; Henry, R.J.; Stone, B.A. *Carbohydr. Res.* 1983,**113** (2): 291-299.

[6] Anumula, K.R.; Taylor, P.B. Anal. Biochem. 1992, 203 (1): 101-108.

[7] Bruker AG. ADVANCE Users Manual. Fällanden, Switzerland, 2000.

[8] Woods, Robert J. "The Application of Molecular Modeling Techniques to the

Determination of Oligosaccharide Solution Conformations." in Reviews of

Computational Chemistry, Volume 9., 129-165. ed. Kenny B. Lipkowitz and

Donald B. Boyd. New Jersey: John Wiley & Sons, Inc., 1996.

[9] Allscher, T.; Klüfers, P.; Mayer, P. *Glycoscience* 2008, (4): 1077-1139.

[10] Steinborn, D; Junicke, H. Chem. Rev. 2000, (100): 4283-4317.

[11] Geetha, K.; Raghavan, M. S. S.; Kulshreshtha, S. K.; Sasikala, R.; Rao, C. P.*Carbohydr. Res.* 1995, **271** (2): 163-175.

[12] Schwarz, T.; Heß, D.; Klufers, P. Dalton Trans. 2010, **39** (23): 5544-5555.

[13] Striegler, S.; Dittel, M. Inorg. Chem. 2005, 44 (8): 2728-2733.

[14] Gilbert, J.D.; Rose, D.; Wilkinson, G. J. Chem. Soc. (A). 1970, 2765-2769.

[15] Rose, D.; Wilkinson, G. J. Chem. Soc. (A). 1970, 1791-1795.

[16] Mercer, E.E.; Dumas, P.E. Inorg. Chem. 1971, 10 (12): 2755-2759.

[17] Togano, T.; Nagao, N.; Tsuchida, M.; Kumakura, H.; Hisamatsu, K.; Howell,

F.S.; Mukaida, M. Inorg. Chim. Acta. 1992, 195: 221-225.

[18] Bino, A.; Cotton, F.A. J. Am. Chem. Soc. 1980, 102 (2): 608-611.

[19] Schanda, J., ed. <u>Colorimetry: Understanding the CIE System</u>. Hoboken: John Wiley and Sons, Inc., 2007.

[20] Guild, J. Phil. Trans. Royal. Soc. London. (A). 1932, 230: 149-187.

[21] Wyszecki, G.; Stiles, W.S. Color Science: Concepts and Methods,

Quantitative Data and Formulae. 2nd ed. New York: John Wiley and Sons, Inc., 1982.

[22] Mortimer, R.J.; Varley, T.S. *Displays*. 2011, **32**: 35-44.

[23] Beck, M.E. Int. J. Quan. Chem. 2005, **101**: 683-689.

[24] Hehre, W.J.; Stewart, R.F.; Pople, J.A. J. Chem. Phys. 1969, 51 (6): 2657-2664.

[25] Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim.Acta.* 1990, **77** (2): 123-141.

[26] McLean, A.D.; Chandler, G.S. J. Chem. Phys. 1980, 72 (10): 5639-5649.

[27] Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. (Theochem) 1999, 464(1-3): 211-226.

[28] Gorelsky, S. I. *AOMix: Program for Molecular Orbital Analysis,* version 6.4; University of Ottawa; Ottawa, ON, 2010. <u>http://www.sg-chem.net</u>. [29] Gorelsky, S.I.; Lever, A.B.P. J. Organomet. Chem. 635 (1-2): 187-196.

[30] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.E.; Robb, M. A.;

Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.;

Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;

Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;

Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven,

T.; Montgomery,

J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,

K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,

A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.;

Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.;

Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.;

Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.;

Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;

Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision

A.02; Gaussian, Inc.: Wallingford, CT, 2009.

[31] Oracle. OpenOffice, version 3.2; <u>http://www.openoffice.org</u>.

[32] Boncheff, A.G.; Monteiro, M.A. Can. J. Chem. 2011, 89 (4): 511-516.

[33] Cotton, S.A. <u>Chemistry of Precious Metals</u>. London: Chapman & Hall, 1997. pp 3-5.

Chapter 6: <u>Appendix</u>

6.1 Input Files for the TDDFT Calculations of the Ruthenium Chloride <u>Clusters</u>

Input File for TDDFT Calculation for the UV/Vis Spectrum of [RuCl₄]⁻

%rwf=RuCl4-tddft-solv.rwf %nosave %chk=RuCl4-tddft-solv.chk %nprocshared=16 #p td=(nstates=30)/genecp scrf=(solvent=water) geom=connectivity pbelpbe Title Card Required -1 4 0.00000100-0.00001200-0.00002100-2.13355500-0.89362600-0.062217000.89364500-2.133470000.062255002.133545000.89372200-0.06206800-0.893650002.133556000.06209300 Ru Cl Cl Cl Cl 1 2 1.0 3 1.0 4 1.0 5 1.0 2 3 4 5 Cl 0 6-311g(2d,p) **** Ru 0 SDD * * * * Ru 0 SDD

Input File for TDDFT Calculation for the UV/Vis Spectrum of [RuCl₅]⁻

%rwf=RuCl5-tddft-solv.rwf %nosave %chk=RuCl5-tddft-solv.chk %nprocshared=16 #p td=(nstates=55)/genecp scrf=(solvent=water) geom=connectivity pbe1pbe Title Card Required -1 5 0.00006500 2.21637400 -0.57456800 0.00002900 -0.46277000 -0.4625200 Ru Cl Cl 0.57475200 -2.21583700 -0.46601300 Cl -0.00110900 -0.00008300 2.26240600 Cl Cl -2.21561700 -0.57463200 -0.46404900 1 2 1.0 3 1.0 4 1.0 6 1.0 2 3 4 5 6 Cl 0 6-311g(2d,p) * * * * Ru 0 SDD * * * * Ru 0 SDD

Input File for TDDFT Calculation for the UV/Vis Spectrum of $[Ru_2CI_6]^-$

<pre>%rwf=Ru2Cl6-tddft-solv.rwf %nosave %chk=Ru2Cl6-tddft-solv.chk %nprocshared=16 #p td=(nstates=80)/genecp scrf=(solvent=water) geom=connectivity pbe1pbe</pre>								
Title (Card Require	d						
-1 4 Ru Cl Cl Cl Cl Cl Cl	051061	1.16207100 -1.16834300 0.23979800 -1.97197200 2.27218100 1.88765100 -0.17131000 -2.20590000	0.13148100 -0.16246400 -1.70320400 -1.85679400 -1.29527600 1.98410300 1.51717600 1.42920400	0.25131500 0.25854400 1.52444400 -1.06695900 -1.15953600 -0.88465400 1.72025000 -1.04075600				
1 2 1 2 4 1 3 4 5 6 7 8	.0 8 1.0	.0						
Cl 0 6-311g(2d,p)								
Ru SDD ****	0							
Ru SDD	0							

Input File for TDDFT Calculation for the UV/Vis Spectrum of [Ru₂Cl₇]⁻

%rwf=Ru2Cl7-tddft-solv.rwf %nosave %chk=Ru2Cl7-tddft-solv.chk %nprocshared=16 #p td=(nstates=95)/genecp scrf=(solvent=water) pbe1pbe Title Card Required -1 5 Ru, 0, 0.0675754883, -0.0697842013, -0.6524804452 Ru, 0, 0.2577529034, -0.0030067407, 2.2758266423 Cl, 0, 1.7132923093, -0.0407961808, -2.2570211459 Cl, 0, -1.2670346298, -1.3925413361, -1.9763805253 Cl,0,-1.6330644716,-0.0496504044,1.0400847333 Cl,0,1.1854550599,1.5884562213,0.6528815793 Cl,0,1.1081343705,-1.7885124111,0.9690205152 Cl, 0, -0.5355192774, -1.5046954292, 3.8529164983 Cl, 0, -0.3222489618, 1.7748455861, 3.6290752021 Cl 0 6-311g(2d,p) * * * * 0 Ru SDD * * * * Ru 0 SDD

Input File for TDDFT Calculation for the UV/Vis Spectrum of [Ru₃Cl₈]⁻

```
%mem=20GB
%rwf=Ru3Cl8-tddft-solv.rwf
%nosave
%chk=Ru3Cl8-tddft-solv.chk
%nprocshared=16
#p td=(nstates=135)/genecp scrf=(solvent=water) geom=connectivity pbelpbe
Title Card Required
-1 2
                   -1.450822000.00130000-0.101663000.750220001.220931000.174034000.77892300-1.224370000.16458600
 Ru
 Ru
 Ru
                   2.01556100 0.04813700 1.81357300
 Cl
                   -1.05313300 -1.61647600 1.59892100
 Cl
 Cl
                  -0.74024500 -1.71748000 -1.58485400
 Cl
                   2.66139100 -1.79227400 -0.95406000
 Cl
                  -1.09369300 1.68415900 1.57150400
 Cl
                   2.53528600 1.79563800 -1.06460800
 Cl
                   -0.79034800 1.72557600 -1.59169200
 Cl
                   -3.73753100 -0.12174200 -0.40208500
 1 2 1.0 3 1.0 11 1.0
 2 3 1.0 8 1.0 9 1.0
 3 5 1.0 7 1.0
 4
 5
 6
 7
 8
 9
 10
11
Cl
       0
6-311g(2d,p)
* * * *
Ru
       0
SDD
* * * *
Ru
       0
SDD
```

Input File for TDDFT Calculation for the UV/Vis Spectrum of [Ru₃Cl₉]⁻

%mem=20GB %rwf=Ru3Cl9-tddft-solv.rwf %nosave %chk=Ru3Cl9-tddft-solv.chk %nprocshared=16 #p td=(nstates=170)/genecp scrf=(solvent=water) geom=connectivity pbe1pbe Title Card Required -1 3 -0.46287700 Ru 0.00000200 1.50482600 1.28762100 -0.55745800 0.03364600 0.03364200 Ru -1.28762100 -0.55745700 Ru -2.34148800 1.47836800 -0.53164300 Cl Cl 0.00000200 -0.31933000 -2.15813000 0.00000100 3.29412900 0.90236800 Cl Cl 1.47836400 -0.53163500 2.34149200 Cl -3.02321800 -1.84198100 -0.75758600 Cl -1.95273500 -0.39888500 2.17591700 Cl -0.00000200 -2.45897000 0.50626100 Cl 3.02321000 -1.84198700 -0.75759500 Cl 1.95273000 -0.39889000 2.17592200 1 2 1.0 3 1.0 4 1.0 6 1.0 7 1.0 2 3 1.0 7 1.0 10 1.0 11 1.0 12 1.0 3 4 1.0 8 1.0 9 1.0 10 1.0 4 5 6 7 8 9 10 11 12 Cl 0 6-311g(2d,p) * * * * 0 Ru SDD * * * * 0 R11 SDD

Input File for TDDFT Calculation for the UV/Vis Spectrum of [Ru₄Cl₁₁]⁻

```
%rwf=Ru4Cl11-tddft-solv.rwf
%nosave
%chk=Ru4Cl11-tddft-solv.chk
%nprocshared=16
%mem=20GB
#p td=(nstate=210) pbe1pbe/genecp scrf=(solvent=water)
Molecule Name
-1 7
 Ru, 0, -2.7452218915, -0.096706825, -0.2091484841
 Ru, 0, 0.0726916404, 1.7373091479, -0.1848548599
 Ru, 0, -0.5286686645, -1.1912778466, -0.3286173874
 Ru,0,2.2515955257,-0.4915614441,0.0662670015
 Cl, 0, -2.2660409231, -2.1968165925, 0.9116826266
 Cl, 0, -0.4097708962, 3.4662638205, 1.237445034
 C1,0,1.4262489838,-2.6994236992,-0.3963324348
 C1,0,3.6997792446,-1.0934049271,1.7580844561
 Cl, 0, 0.4899323879, -0.503864559, 1.7348690785
 Cl, 0, 2.3851216307, 1.8668636825, 0.439706065
 Cl,0,-2.1449019254,1.9655246382,-1.2356506586
 Cl,0,-2.0672913001,-1.4215251426,-2.144343185
 Cl,0,0.8012923411,0.1397823193,-1.846460889
 Cl, 0, 3.9910021422, -0.5524927918, -1.4703823182
 Cl, 0, -3.5020612955, 0.9280592198, 1.6976049555
Cl
       Ω
6-311g(2d,p)
* * * *
R11
       0
SDD
* * * *
Ru
       0
SDD
```

Input File for TDDFT Calculation for the UV/Vis Spectrum of [Ru₅Cl₁₂]⁻

%mem=21GB %rwf=Ru5Cl12-tddft-solv.rwf %nosave %chk=Ru5Cl12-tddft-solv.chk %nprocshared=16 #p td(nstates=300) genecp scrf=(solvent=water) pbe1pbe Title Card Required -1 8 Ru, 0, 2.0340041628, 1.1945581384, -0.2982879777 Ru, 0, 1.2861244968, -1.1037973528, -0.3911287573 Ru, 0, -2.1389505054, -1.1836714115, -0.3131044802 Ru, 0, -1.1254862008, 1.0312787029, -0.4288971394 Cl,0,0.4045906725,2.8674103451,-0.9160037344 Cl, 0, 1.7979985953, 0.1015174079, -2.4363414221 C1, 0, -0.4093563237, -2.7896749635, -0.806316635 Cl, 0, -1.6687415489, -0.1998031143, -2.4589964209 Cl,0,4.267671875,0.6876521816,-0.0738795901 Cl, 0, 2.9824172336, -2.5591825408, -0.8863360194 Cl,0,-4.3704227795,-0.6355500815,-0.1460703427 Cl, 0, -2.8751455251, 2.418034483, -1.0310346768 Ru, 0, -0.0382546536, 0.0327361024, 1.8192765252 Cl,0,1.8601028042,1.4865842293,2.0664545178 Cl, 0, 1.3677116951, -1.8534953523, 1.85809389 Cl, 0, -1.428635431, 1.9171624179, 1.7650656994 Cl,0,-1.9704475672,-1.3827371916,2.0671165637 Cl Ω 6-311g(2d,p) * * * * Ru 0 SDD * * * * Ru 0 SDD

6.2 <u>Cartesian Coordinates of Geometry Optimized Ruthenium Chloride</u> <u>Clusters</u>

RuCl₄ Coordinates

Atom	X	Y	Z
1Ru	0.000014	0.000032	-0.000022
2CI	2.298548	-0.259491	-0.062218
3CI	0.259464	2.298494	0.062254
4CI	-2.298567	0.259444	-0.062069
5CI	-0.259482	-2.298530	0.062092

RuCl₅ Coordinates

Atom	X	Y	Z
1Ru	0.000100	0.000000	-0.155800
2CI	2.216400	0.574700	-0.462800
3CI	-0.574600	2.215900	-0.466300
4CI	0.574800	-2.215800	-0.466000
5CI	-0.001100	-0.000100	2.262400
6CI	-2.215600	-0.574700	-0.464000

Ru₂Cl₆ Coordinates

Atom	X	Y	Z	
1Ru	1.166400	-0.070300	0.202900	
2Ru	-1.178800	0.057200	0.234000	
3CI	-0.053000	-1.668200	1.543500	
4CI	-2.287400	-1.508700	-1.028000	
5CI	1.987400	-1.717700	-1.164800	
6CI	2.197200	1.584800	-1.000000	
7CI	0.119100	1.578500	1.631400	
8CI	-1.931300	1.765300	-1.112900	

Atom	X	Y	Z	
1Ru	1.455700	0.108500	-0.269200	
2Ru	-1.426000	0.131700	0.288300	
3CI	3.204400	1.076500	0.866000	
4CI	2.782600	-1.657700	-0.904400	
5CI	-0.391200	-0.851000	-1.463200	
6CI	0.086100	2.045300	0.006800	
7CI	0.159400	-0.872200	1.736700	
8CI	-2.889500	-1.632600	0.629900	
9CI	-3.028900	1.270000	-0.921300	

Ru₃Cl₈ Coordinates

Atom	X	Y	Z	
1Ru	-1.450800	0.001300	-0.101700	
2Ru	0.750200	1.220900	0.174000	
3Ru	0.778900	-1.224400	0.164600	
4CI	2.015600	0.048100	1.813600	
5CI	-1.053100	-1.616500	1.598900	
6CI	-0.740200	-1.717500	-1.584900	
7CI	2.661400	-1.792300	-0.954100	
8CI	-1.093700	1.684200	1.571500	
9CI	2.535300	1.795600	-1.064600	
10CI	-0.790300	1.725600	-1.591700	
11CI	-3.737500	-0.121700	-0.402100	

Ru₃Cl₉ Coordinates

Atom	X	Y	Z
1Ru	0.000000	1.504800	-0.462900
2Ru	1.287600	-0.557500	0.033600
3Ru	-1.287600	-0.557500	0.033600
4CI	-2.341500	1.478400	-0.531600
5CI	0.000000	-0.319300	-2.158100
6CI	0.000000	3.294100	0.902400
7CI	2.341500	1.478400	-0.531600
8CI	-3.023200	-1.842000	-0.757600
9CI	-1.952700	-0.398900	2.175900
10CI	-0.000000	-2.459000	0.506300
11CI	3.023200	-1.842000	-0.757600
12CI	1.952700	-0.398900	2.175900

Atom	X	Y	Z
1Ru	-2.707100	-0.474000	-0.050800
2Ru	-0.163300	1.688900	-0.445000
3Ru	-0.364100	-1.271400	-0.051100
4Ru	2.299600	-0.153200	0.120100
5CI	-1.937000	-2.258400	1.404900
6CI	-0.861100	3.565700	0.666700
7CI	1.776100	-2.497100	0.081200
8CI	3.832700	-0.247200	1.841200
9CI	0.572600	-0.098300	1.823600
10CI	2.116400	2.230800	0.068300

11CI	-2.401700	1.432100	-1.443700
12CI	-1.875500	-2.022700	-1.744800
13CI	0.758200	-0.070100	-1.823500
14CI	4.015900	-0.258700	-1.440000
15CI	-3.576700	0.766700	1.670600

Atom	X	Y	Z
1Ru	2.041800	1.181700	-0.298500
2Ru	1.278700	-1.111600	-0.391400
3Ru	-2.146900	-1.168800	-0.313300
4Ru	-1.118700	1.039400	-0.429100
5CI	0.423500	2.865300	-0.916200
6CI	1.798500	0.090300	-2.436600
7CI	-0.428000	-2.786200	-0.806500
8CI	-1.670100	-0.188000	-2.459200
9CI	4.272000	0.660000	-0.074100
10CI	2.965200	-2.578300	-0.886600
11CI	-4.374700	-0.605800	-0.146300
12CI	-2.859100	2.437700	-1.031300

13Ru	-0.038100	0.033700	1.819100
14CI	1.869800	1.474900	2.066200
15CI	1.355300	-1.861900	1.857900
16CI	-1.416000	1.927300	1.764800
17CI	-1.979700	-1.368900	2.066900

6.3 Raw UV/Vis Spectra Data for the Ruthenium Chloride Clusters

UV/Vis Spectrum for [RuCl₄]⁻

#	UV-VIS S	pectrum			
#	X-Axis:	Excitation	Energy	(nm)	
#	Y-Axis:	Epsilon			
#		Х		Y	DY/DX
	380.	0000000000	2382	.0840114075	52.4655955851
	385.	0000000000	2442	.9695549657	60.8005809396
	390.	0000000000	2509	.2500225839	59.1708375878
	395.	0000000000	2564	.8199325086	48.6450402703
	400.	0000000000	2596	6821889848	31.5257430498
	405.	0000000000	2595	.9813518708	10.8907659044
	410.	0000000000	2558	.2704546307	-10.0344437161
	415.	0000000000	2483	.1750060207	-28.4837449219
	420.	0000000000	2373	.6568714752	-42.5693539343
	425.	00000000000	2235	.0773602643	-51.4345831669
	430.	00000000000	2074	.2274460190	-55.1598607210
	435.	0000000000	1898	.4476184725	-54.5070678223
	440.	00000000000	1714	.9118518888	-50.6063078547
	445.	0000000000	1530	.1074955668	-44.6710969299
	450.	00000000000	1349	.5098786607	-37.7918978994
	455.	00000000000	1177	.4284086158	-30.8217465536
	460.	00000000000	1016	.9891407529	-24.3419999069
	465.	0000000000	8/0	1.2152056126	-18.683/938644
	470.	0000000000	/38	1220052401	-13.9/92691356
	4/5.	0000000000	6ZI	.1228953481	-10.2216035760
	480.	0000000000	518	0.7419258461	- 1.3202249219
	485.	00000000000	430	E001007210	-5.14445/5/04
	490.	00000000000	200	50150/0622	-2 4171402065
	495.	00000000000	236	7139904185	-1 6207619824
	505	00000000000	101	9211886013	-1 0727759158
	510	00000000000	154	8978982450	-0 7017308654
	515	00000000000	124	4904057619	-0 4541104317
	520.	00000000000	99	. 6684336844	-0.2910062317
	525.	00000000000	79	.5164901900	-0.1848334971
	530.	0000000000	63	.2370905001	-0.1164541113
	535.	0000000000	50	.1453187790	-0.0728377128
	540.	0000000000	39	.6600684912	-0.0452577099
	545.	0000000000	31	.2935088492	-0.0279543358
	550.	0000000000	24	.6399005806	-0.0171747960
	555.	0000000000	19	.3645350476	-0.0105018763
	560.	0000000000	15	.1932956212	-0.0063944810
	565.	0000000000	11	.9031320039	-0.0038790146
	570.	0000000000	9	.3135869407	-0.0023453921
	575.	0000000000	7	.2794097566	-0.0014140811
	580.	0000000000	5	.6842222326	-0.0008504965
	585.	0000000000	4	.4351605237	-0.0005104735
	590.	0000000000	3	.4583946446	-0.0003058641
	595.	0000000000	2	.6954185108	-0.0001830127
	600.	0000000000	2	.1000040166	-0.0001093866
	605.	0000000000	1	.6357187042	-0.0000653284
	610.	0000000000	1	.2739157707	-0.0000389952
	615.	000000000000000	0	.9921157415	-0.0000232702

620.000000000	0.7727099835	-0.0000138858
625.000000000	0.6019266231	-0.0000082874
630.000000000	0.4690089647	-0.0000049480
635.0000000000	0.3655649868	-0.0000029559
640.000000000	0.2850538529	-0.0000017672
645.0000000000	0.2223816672	-0.0000010575
650.000000000	0.1735839801	-0.000006335
655.000000000	0.1355769450	-0.000003799
660.000000000	0.1059626331	-0.000002282
665.000000000	0.0828769582	-0.000001372
670.000000000	0.0648710464	-0.000000827
675.000000000	0.0508188015	-0.000000499
680.000000000	0.0398449524	-0.000000302
685.000000000	0.0312690880	-0.000000183
690.000000000	0.0245621569	-0.000000111
695.000000000	0.0193126719	-0.000000067
700.000000000	0.0152004650	-0.000000041
705.000000000	0.0119763108	-0.000000025
710.000000000	0.0094461087	-0.000000015
715.000000000	0.0074586050	-0.000000009
720.000000000	0.0058958616	-0.000000006
725.000000000	0.0046658559	-0.000000004
730.000000000	0.0036967351	-0.000000002
735.000000000	0.0029323524	-0.000000001
740.000000000	0.0023287986	-0.000000001
745.000000000	0.0018517066	-0.000000001
750.000000000	0.0014741535	-0.000000000
755.0000000000	0.0011750297	-0.000000000
760.000000000	0.0009377678	-0.000000000
765.000000000	0.0007493528	-0.000000000
770.000000000	0.0005995502	-0.000000000
775.0000000000	0.0004803041	-0.0000000000

UV/Vis Spectrum for [RuCl₅]⁻

#	UV-VIS	Spectrum#	X-Ax:	is:	Ex	cita	tior	n Energy	(nm)	
# #	I-AX1S:	Epsilon	х					Y		DY/DX
	380	.000000000)0	330	64.	8071	7640)89	31.7456	707514
	385	.000000000	0	359	93.	1013	0036	576	40.2358	572304
	390	.000000000	0	384	48.	8853	5754	14	49.5031	001876
	395	.000000000	0	412	21.	5396	2692	206	57.8904	427175
	400	.000000000	0	44(.00	4435	7590)37	63.4781	737183
	405	.000000000	0	46	75.	4539	4866	518	64.8450	958717
	410	.000000000	0	493	37.	3310	7845	534	61.5486	761495
	415	.000000000	00	51	78.	0743	6334	95	54.1922	599989
	420	.000000000	0	539	91.	1382	7029	953	44.1372	591338
	425	.000000000	0	55	71.	5203	8200)36	33.0339	081812
	430	.000000000	00	57	15.	7336	5795	984	22.3624	037162
	435	.000000000	0	582	21.	6899	5847	13	13.1211	315885
	440	.000000000	0	580	38. 16	3284. 4200	1243	32U 250	5./143	050220
	445	.000000000	0	59.	10.	2005	4283 0200	000	-4 4479	938338 270016
	450		0	580	50. 60 I	0880. 2002	0203 7432	909 992	-8 2984	798584
	460	000000000000000000000000000000000000000	0	57	79	7512	4313	395	-12 1059	851670
	465	.000000000	0	56	67.	9764	1724	174	-16.2693	481199
	470	.0000000000	0	552	27.	682.6	1143	326	-20.9606	602110
	475	.000000000	0	530	62.	0171	3644	22	-26.1321	420717
	480	.000000000	0	51	74.3	2873	3893	808	-31.5654	137382
	485	.000000000	0	49	67.	8965	1892	257	-36.9411	414247
	490	.000000000	0	474	46.3	2820	1346	518	-41.9102	793539
	495	.000000000	0	453	12.	8543	9081	.84	-46.1538	809583
	500	.000000000	0	42	70.	9382	8994	18	-49.4246	828594
	505	.000000000	0	402	23.	7164	8024	48	-51.5689	550374
	510	.000000000	0	37	74.	1791	8220	91	-52.5308	130566
	515	.000000000	0	352	25.	0806	5924	124	-52.3432	271583
	520	.000000000	0	32	/8.	904/	0145	62	-51.1106	063/92
	530	.000000000	0	20.	י <i>ו</i> כ ר כר	0400. 7659	2201 1219	200	-40.9074	×10393
	535		0	25	78 ·	2478	5840	199	-42 8117	132560
	540	000000000	0	23	, o 62	5422	8517	751	-39 1378	101550
	545	.0000000000	0	21	57.	6091	8932	291	-35.3042	302467
	550	.000000000	0	190	64.	1311	8550	90	-31.4554	467585
	555	.000000000	0	178	32.	5373	7948	352	-27.7081	444519
	560	.000000000	0	163	13.	0305	0430	64	-24.1507	763613
	565	.000000000	0	145	55.	6158	6530	02	-20.8452	393522
	570	.000000000	0	133	10.	1308	1484	170	-17.8299	165355
	575	.000000000	00	11'	76.	2736	8928	866	-15.1234	462098
	580	.000000000	0	105	53.	6313	6538	865	-12.7287	156249
	585	.000000000	0	94	41.	7048	1460)73	-10.6367	184535
	590	.000000000	00	83	39.	9322	3720	060	-8.8300	417895
	595	.000000000	0		4/.	/095.	3696	0	-7.2858	422526
	600 605	.000000000	0	5	04. 00	2005	4691 2575	.42	-5.9/83	423336
	605	.000000000	0	50	59. วว	3893. 0196'	3373 1507	130 010	-4.8806	166070
	615		0		22. 61	6727	3146	52	-3 2095	863702
	620		0	- τ Δ (ידט 17	7499	6875	500	-2 5877	089046
	62.5	.0000000000	0	3	59.	6749	0788	345	-2.0794	513834
	630	.000000000	0	31	16.	9027	9911	.10	-1.6662	032773
	635	.000000000	0	2	78.	9222	9660)74	-1.3317	622464
	640	.000000000	0	24	45.3	2569	9316	576	-1.0622	170719
	645	.000000000	0	22	15.	4659	7420	24	-0.8457	666815
	650	.000000000	0	18	39.	1435	8876	504	-0.6725	050304

655.000000000	165.9186121290	-0.5341936042
660.000000000	145.4529512292	-0.4240366809
665.0000000000	127.4400214399	-0.3364692138
670,0000000000	111.6029023444	-0.2669631582
675.0000000000	97.6923606031	-0.2118550896
680.0000000000	85.4848109367	-0.1681958652
685.0000000000	74.7802711215	-0.1336216881
690.0000000000	65.4003539256	-0.1062450648
695.0000000000	57.1863279250	-0.0845636828
700.0000000000	49,9972699889	-0.0673850384
705.0000000000	43.7083247189	-0.0537646429
710.000000000	38.2090800773	-0.0429557512
715.0000000000	33.4020636559	-0.0343687362
720.0000000000	29.2013603200	-0.0275384493
725.0000000000	25.5313491635	-0.0220981286
730.000000000	22.3255556494	-0.0177586311
735.0000000000	19.5256133725	-0.0142919637
740.000000000	17.0803289301	-0.0115182615
745.0000000000	14.9448428299	-0.0092955196
750.000000000	13.0798791099	-0.0075115100
755.0000000000	11.4510763246	-0.0060774297
760.000000000	10.0283927026	-0.0049229127
765.0000000000	8.7855785516	-0.0039921164
770.000000000	7.6997093495	-0.0032406512
775.0000000000	6.7507733696	-0.0026331706

UV/Vis Spectrum for [Ru₂Cl₆]⁻

#	UV-VIS Spectrum		
#	X-Axis: Excitation	Energy (nm)	
#	Y-Axis: Epsilon		
#	Х	Y	DY/DX
	380.000000000	1259.4084809234	-12.8916765303
	385.000000000	1117.6091083598	-3.7465438661
	390.000000000	1019.7734212475	2.7753373780
	395.000000000	957.7742012425	7.0528403620
	400.000000000	923.5245418435	9.4617953489
	405.000000000	909.5410291215	10.3525872551
	410.0000000000	909.2839880015	10.0577988635
	415.0000000000	917.3165235823	8.9005732795
	420.000000000	929.3289511532	7.1913050396
	425.000000000	942.0720484690	5.2132341099
	430.000000000	953.2355797093	3.2040061760
	435.0000000000	961.3004084898	1.3410322438
	440.0000000000	965.3847232824	-0.2642739318
	445.0000000000	965.0981414427	-1.5622209829
	450.0000000000	960.4119769592	-2.5526644246
	455.0000000000	951.549/49/384	-3.2688216592
	460.000000000	938.8989633528	-3.7610848154
	465.000000000	922.94311/50//	-4.083/819669
	470.000000000	904.2116692484	-4.2862925433
	475.0000000000	883.2450334127	-4.4085004993
	480.0000000000	000.3713309473	-4.4/90334//2
	485.0000000000	010 0706105053	-4.5191992330
	495.000000000	787 1618713850	-4 5439890349
	500 00000000000	767.1010713030	-4 5359577933
	505.000000000	737.9574319184	-4.5125996339
	510.0000000000	714.3527294266	-4.4694819930
	515.0000000000	691.8111529349	-4.4006335375
	520.000000000	670.5908919124	-4.2993461501
	525.000000000	650.9189419838	-4.1590089144
	530.000000000	632.9916017443	-3.9739271149
	535.0000000000	616.9746733911	-3.7400365540
	540.000000000	603.0034848284	-3.4554204006
	545.0000000000	591.1828624469	-3.1205643373
	550.000000000	581.5871772155	-2.7383311599
	555.0000000000	574.2605689075	-2.3136829414
	560.000000000	569.2174294858	-1.8532157225
	565.000000000	566.4432007595	-1.3645920847
	570.0000000000	565.8955160379	-0.8559597546
	575.000000000	567.5056923798	-0.3354323421
	580.0000000000	571.1805601193	0.1893135774
	585.0000000000	576.8046001142	0.7112969642
	590.0000000000	584.2423466860	1.2243436915
	595.000000000	593.3410053597	1.7230689962
		615 9302209070	2.2027033072
	610 0000000000	628 8735116814	2.0392224434
	615 000000000000000000000000000000000000	642 8401360385	3 4870299800
		657 5431835297	3 8509213583
		672 7856482766	4 1764750509
	630,0000000000	688.3727515164	4.4598978603
	635,000000000	704.1142963736	4,6974281664
	640.0000000000	719,8267987541	4.8854565745
	645.0000000000	735.3353732356	5.0206837285

650.000000000	750.4753598344	5.1002969748
655.0000000000	765.0936841974	5.1221472986
660.000000000	779.0499499493	5.0849095668
665.0000000000	792.2172674959	4.9882120932
670.000000000	804.4828284675	4.8327253690
675.0000000000	815.7482391209	4.6202039719
680.000000000	825.9296293921	4.3534797571
685.000000000	834.9575569008	4.0364081064
690.0000000000	842.7767270857	3.6737720431
695.0000000000	849.3455518304	3.2711512832
700.000000000	854.6355694996	2.8347647426
705.000000000	858.6307492889	2.3712957001
710.000000000	861.3267023007	1.8877088038
715.000000000	862.7298208463	1.3910675290
720.000000000	862.8563662409	0.8883596926
725.000000000	861.7315238590	0.3863373295
730.000000000	859.3884425418	-0.1086242123
735.000000000	855.8672736489	-0.5906445907
740.000000000	851.2142231838	-1.0544322746
745.000000000	845.4806285587	-1.4953532115
750.000000000	838.7220697211	-1.9094748667
755.000000000	830.9975226010	-2.2935870696
760.000000000	822.3685611645	-2.6452018072
765.000000000	812.8986128047	-2.9625346052
770.000000000	802.6522703806	-3.2444704320
775.000000000	791.6946629358	-3.4905171851

UV/Vis Spectrum for [Ru₂Cl₇]⁻

#	UV-VIS S	pectrum			
#	X-Axis:	Excitation	Energy	(nm)	
#	Y-Axis:	Epsilon			
#		X		Y	DY/DX
	380.	0000000000	5059	.4104773827	-49.6430376457
	385.	0000000000	4912	.5950226685	-53.7824451716
	390.	00000000000	4738	.3067178342	-51.5613931279
	395.	00000000000	4548	.3562436307	-45.6456435899
	400.	00000000000	4352	.8573726913	-38.3950441125
	405.	00000000000	4159	.7379331313	-31.4251635736
	410.	0000000000	3974	.6726416136	-25.5656492999
	415.	00000000000	3801	.3055392353	-21.0472218486
	420.	00000000000	3641	.6313352595	-17.7520685783
	425.	0000000000	3496	.4287256261	-15.4230440595
	430.	0000000000	3365	.6709280778	-13.7936359866
	435.	00000000000	3248	.8698264692	-12.6454101275
	440.	00000000000	3145	.3352/1/922	-11.81/968/6/3
	445.	00000000000	3054	.348/133698	-11.1963275894
	430.	00000000000	29/3	5204160262	-10.2202501990
	455.	00000000000	2907	7105080285	-9 73/3309586
	400.	00000000000	2804	4244096755	-9 1269673591
	470	000000000000000000000000000000000000000	2768	3043839481	-8 3286998314
	475.	00000000000	2741	.9426522917	-7.2641043255
	480.	0000000000	2724	.8409371075	-5.8709064887
	485.	0000000000	2716	.3715350746	-4.1108089714
	490.	0000000000	2715	.7524018710	-1.9798494141
	495.	0000000000	2722	.0376913352	0.4840400307
	500.	00000000000	2734	.1235040093	3.1982259568
	505.	00000000000	2750	.7672835028	6.0384354248
	510.	00000000000	2770	.6183609989	8.8477052888
	515.	00000000000	2792	.2565776144	11.4501539646
	520.	00000000000	2814	.2356821434	13.6676804721
	525.	0000000000	2835	.1282623773	15.3372716406
	530.	0000000000	2853	.5692636498	16.3266197146
	535.	00000000000	2868	.2956134983	16.5461582250
	540.	00000000000	2878	.1800403605	15.9562864561
	545.	00000000000	2882	.25//854816	12 4464241421
	555	00000000000	2019	0522207500	0 6003050561
	560	00000000000	2070	7826395274	6 4354793314
	565	00000000000	2002	7334327376	2 8356206472
	570.	000000000000000000000000000000000000000	2794	.8836426738	-0.9475278790
	575.	00000000000	2754	.3800698312	-4.7557175156
	580.	0000000000	2706	.5189936028	-8.4434817838
	585.	0000000000	2651	.7253420925	-11.8852650187
	590.	0000000000	2590	.5304277703	-14.9800941781
	595.	0000000000	2523	.5492433724	-17.6538547819
	600.	00000000000	2451	.4581700012	-19.8594340182
	605.	00000000000	2374	.9737919089	-21.5751244713
	610.	0000000000	2294	.8333517770	-22.8017444293
	615.	0000000000	2211	.7772256944	-23.5589360030
	620.	0000000000	2126	.5336552626	-23.8810645386
	625.	0000000000	2039	.8058497442	-23.8130770359
	630.	00000000000	1952	.2614663428	-23.4065972558
	635.	00000000000	1864	.5243923245	-22.7164522612
	640.	00000000000	1777	.1686882415	-21./9//4/6427
	645.	00000000000	т 6 9 0	./143035/24	-20./035420453

650.000000000	1605.6257625997	-19.4831185765
655.0000000000	1522.3093469452	-18.1808119255
660.000000000	1441.1156093821	-16.8353246866
665.0000000000	1362.3399189058	-15.4794526738
670.000000000	1286.2250612982	-14.1401346609
675.0000000000	1212.9642805261	-12.8387445923
680.0000000000	1142.7047825121	-11.5915516645
685.0000000000	1075.5515426515	-10.4102838303
690.0000000000	1011.5712807332	-9.3027416794
695.0000000000	950.7964887540	-8.2734211251
700.000000000	893.2294178273	-7.3241140659
705.0000000000	838.8459495075	-6.4544657009
710.000000000	787.5992941107	-5.6624751960
715.0000000000	739.4234738471	-4.9449328650
720.000000000	694.2365617718	-4.2977920092
725.0000000000	651.9436587455	-3.7164771950
730.000000000	612.4395998931	-3.1961332325
735.000000000	575.6113895961	-2.7318206550
740.000000000	541.3403700340	-2.3186642902
745.0000000000	509.5041328800	-1.9519617425
750.000000000	479.9781871385	-1.6272584334
755.000000000	452.6373984777	-1.3403954012
760.000000000	427.3572169070	-1.0875354608
765.000000000	404.0147104551	-0.8651726319
770.000000000	382.4894227336	-0.6701290392
775.000000000	362.6640720667	-0.4995428023

UV/Vis Spectrum for [Ru₃Cl₈]⁻

#	UV-VIS S	pectrum			
#	X-Axis:	Excitation	Energy	(nm)	
#	Y-Axis:	Ensilon	2110191	(1111)	
#	1 111110.	X		Y	אם/ אם
"	380	000000000	3810	6101151390	15 9866533206
	385	00000000000	3820	1825464523	14 9886228833
	390	00000000000	3841	2635269324	13 2659948361
	395	00000000000	3865	8499987813	11 6673999635
	400	00000000000	3887	2202938971	10 3291846596
	400.	0000000000	39007	0476080320	8 91/75/7110
	405.	00000000000	3000	2750120155	6 0200/17202
	410.	00000000000	2005	5220152502	4 0/12202020
	413.	00000000000	2003	0500001747	4.0413393020
	420.	00000000000	3805	1201559703	-1 58/3906099
	425.	00000000000	3003	3379561991	-9 7031274549
	430.	00000000000	3657	60102/9020	-14 7280701369
	433.	00000000000	3561	138/051891	-10 1085158/67
	440.	00000000000	3/52	7571260704	-22 7740909146
	4450	00000000000	2223	6968866776	-25 2761531861
	430.	00000000000	3206	1003611051	-26 6972446925
	400.	00000000000	3200	2060070507	-27 1200005107
	460.	00000000000	2073	5225545675	-26 7707931312
	405.	00000000000	2930	8/0206613/	-25 8693385773
	470.	00000000000	2757	1365720123	-24 6378132326
	475.	00000000000	2000	016/775373	-23 26115/1/08
	400.	00000000000	2321	1812738214	_21 8723928811
	405.	00000000000	2307	.4012/30214	-20 5504780662
	490.	00000000000	2230	0702107320	-10 3273272876
	495. 500	00000000000	2130	3884157010	-18 2000921177
	505	00000000000	1895	5761004938	-17 1449790330
	510	00000000000	1786	8/5735911/	-16 1298715998
	515	00000000000	1684	3675060157	-15 12/0992028
	520	00000000000	1588	1991681896	-14 1047211173
	525	00000000000	1498	3049781570	-13 0594788947
	530	00000000000	1414	5725278803	-11 9870561826
	535	00000000000	1336	8275416171	-10 8954928246
	540	00000000000	1264	8467873229	-9 7995941164
	545	00000000000	1198	3693091422	-8 7180364298
	550	00000000000	1137	1061927523	-7 6706708859
	555	00000000000	1080	7490563683	-6 6763232903
	560	00000000000	1028	9774296646	-5 7512158400
	565	00000000000	981	4651500038	-4 9080097498
	570	00000000000	937	8858758655	-4 1553894242
	575	00000000000	897	9177940842	-3 4980710400
	580	00000000000	861	2475812450	-2 9371106407
	585	00000000000	827	5736698437	-2 4703979832
	590	00000000000	796	6088653737	-2 0932430699
	595	00000000000	768	0823598541	-1 7989857151
	600	00000000000	700	7411889799	-1 5795803634
	605	00000000000	717	3511827701	-1 4261265391
	610	00000000000	694	6974623164	-1 3293291108
	615	00000000000	673	5845372900	-1 2798822888
	620	00000000000	673	8360598300	-1 2687776576
	625	00000000000	635	2942901355	-1 2875404362
	630	00000000000	617	8193275029	-1 3284003378
	635	00000000000	601 601	2881578240	-1 3844044740
	640	000000000000000000000000000000000000000	525	5935642261	-1 4494801634
	645	00000000000	570	.6429484334	-1.5184555221
	510.		0,0		

650.000000000	556.3570871098	-1.5870455100
655.000000000	542.6688793327	-1.6518107367
660.000000000	529.5220900638	-1.7100958521
665.000000000	516.8701265009	-1.7599537608
670.000000000	504.6748610548	-1.8000612267
675.0000000000	492.9055156920	-1.8296306934
680.000000000	481.5376178758	-1.8483223617
685.0000000000	470.5520349528	-1.8561597611
690.0000000000	459.9340909310	-1.8534512722
695.000000000	449.6727671478	-1.8407193123
700.000000000	439.7599863274	-1.8186382284
705.000000000	430.1899779269	-1.7879813568
710.000000000	420.9587214375	-1.7495772227
715.000000000	412.0634633938	-1.7042744713
720.000000000	403.5023032131	-1.6529148376
725.000000000	395.2738425811	-1.5963132743
730.000000000	387.3768929031	-1.5352442507
735.000000000	379.8102352870	-1.4704331976
740.000000000	372.5724276100	-1.4025520960
745.000000000	365.6616533928	-1.3322182661
750.000000000	359.0756074548	-1.2599955105
755.000000000	352.8114136227	-1.1863968691
760.000000000	346.8655700947	-1.1118883679
765.000000000	341.2339184117	-1.0368932587
770.000000000	335.9116323456	-0.9617963625
775.000000000	330.8932233646	-0.8869482317

UV/Vis Spectrum for [Ru₃Cl₉]⁻

#	UV-VIS Spectrum		
#	X-Axis: Excitation	Energy (nm)	
#	Y-Axis: Epsilon		
#	X	Y	DY/DX
	380.000000000	7006.6009759427	-50.3660753012
	385.000000000	6673.5474337694	-45.3718865609
	390.000000000	6348.2764165427	-42.3258560317
	395.0000000000	6032.3155504784	-40.9122108162
	400.000000000	5726.4708218553	-40.3479899755
	405.000000000	5431.0050187223	-39.8904504230
	410.000000000	5145.8484586503	-39.1184209338
	415.0000000000	4870.7811933299	-37.9699408441
	420.000000000	4605.5628025923	-36.6182547569
	425.000000000	4350.0088631702	-35.2980036922
	430.000000000	4104.0241967218	-34.1692927994
	435.0000000000	3867.6060475821	-33.2594680625
	440.0000000000	3640.8291623902	-32.4781400765
	445.0000000000	3423.8219786075	-31.6752832101
	450.0000000000	3216.7402495644	-30.7072069753
	455.0000000000	3019.7420559699	-29.4845472029
	460.0000000000	2832.9664026066	-27.9912747778
	465.000000000	2656.5163881824	-26.2768736329
	470.000000000	2490.44/132131/	-24.4315968568
	475.000000000	2334.7581318020	-22.5566464305
	480.000000000	2189.3894288388	-20.7388440945
	485.0000000000	1020 0724207412	-17 /670995522
	490.0000000000	1913 7127185//1	-16 0298050111
	500 0000000000	1707 8527505100	-14 6926575371
	505 000000000	1611 1609279486	-13 4198506018
	510,000000000	1523.2631207732	-12,1762777315
	515.0000000000	1443.7489625476	-10.9358382083
	520.000000000	1372.1772327444	-9.6852840134
	525.000000000	1308.0812906826	-8.4247654055
	530.000000000	1250.9745464893	-7.1658848452
	535.0000000000	1200.3559539151	-5.9282746081
	540.000000000	1155.7154962238	-4.7356627637
	545.0000000000	1116.5396173523	-3.6121859522
	550.000000000	1082.3165322013	-2.5794383826
	555.000000000	1052.5413364008	-1.6544843818
	560.000000000	1026.7208293686	-0.8488489622
	565.0000000000	1004.3779654678	-0.1683551506
	570.000000000	985.0558558963	0.3864018833
	575.0000000000	968.3212571591	0.8191766034
	580.0000000000	953.7674988263	1.1370061642
	585.0000000000	941.0168219459	1.3491289580
	590.000000000	929.7221183587	1.466011/65/
	595.0000000000	919.5680789531	1.49855/9260
		910.2/1//4648/	1 2521490042
	610 0000000000	201.J02/0/0340 202 22225012/	1 10/0/05600
	615 0000000000	095.2023/30134	1.1949423039
		877 1283744685	0.7512229355
		868 9881549786	0.4810299434
	630,0000000000	860.6602457375	0.1878531638
	635,0000000000	852.0667353645	-0.1219439806
	640.0000000000	843.1522049434	-0.4423408376
	645.000000000	833.8815370487	-0.7676027815
650.000000000	824.2376898269	-1.0922579058	
----------------	----------------	---------------	
655.000000000	814.2194773158	-1.4111046164	
660.000000000	803.8393916309	-1.7192441934	
665.0000000000	793.1214971012	-2.0121305385	
670.000000000	782.0994210466	-2.2856287832	
675.0000000000	770.8144607792	-2.5360748788	
680.000000000	759.3138216493	-2.7603294280	
685.000000000	747.6489966095	-2.9558205471	
690.0000000000	735.8742938641	-3.1205722367	
695.000000000	724.0455157255	-3.2532163894	
700.000000000	712.2187888050	-3.3529880406	
705.000000000	700.4495431243	-3.4197046979	
710.000000000	688.7916356172	-3.4537315092	
715.0000000000	677.2966117689	-3.4559346669	
720.000000000	666.0130977999	-3.4276257916	
725.000000000	654.9863147848	-3.3705001505	
730.000000000	644.2577053905	-3.2865714773	
735.000000000	633.8646634768	-3.1781059279	
740.000000000	623.8403565922	-3.0475573694	
745.000000000	614.2136313861	-2.8975058155	
750.000000000	605.0089921206	-2.7306004038	
755.000000000	596.2466427548	-2.5495079160	
760.000000000	587.9425834836	-2.3568674642	
765.000000000	580.1087531035	-2.1552516388	
770.000000000	572.7532091332	-1.9471341389	
775.000000000	565.8803382141	-1.7348636780	

UV/Vis Spectrum for [Ru₄Cl₁₁]⁻

#	UV-VIS Spectrum			
#	X-Axis: Excitation	Energy	(nm)	
#	Y-Axis: Epsilon			/
#	X	2700	Y	DY/DX
	380.0000000000	3/95	.5886263160	-22.2772890951
	385.0000000000	3605	7461566400	- / . 28 / 950 / 399
	395.0000000000	2401	0101000070	4.0210000233
	400 00000000000	34103	01/3868301	16 6710500005
	405.0000000000	3420	7123051134	19 1881527644
	410 00000000000	3486	5 8022434648	20 1206397709
	415.000000000	3567	,9101922552	20.1412107920
	420.0000000000	3667	1493086753	19.7803612142
	425.000000000	3779	.9519567221	19.3831522040
	430.000000000	3902	2.9268058799	19.1090499230
	435.000000000	4033	8.6759530710	18.9704589502
	440.000000000	4170	.5972319518	18.8955312651
	445.000000000	4312	2.6884663570	18.7962469840
	450.000000000	4459	0.3640963019	18.6239513375
	455.000000000	4610	.2903566453	18.4003930381
	460.000000000	4765	5.2426092459	18.2203807919
	465.000000000	4923	3.9869498038	18.2298278131
	470.000000000	5086	5.1872927342	18.5882724441
	475.0000000000	5251	.3383849413	19.4271141749
	480.0000000000	5418	3.7243938415	20.8139661305
	485.0000000000	5587	401/9885/6	22.7305516833
	490.000000000	5/50	2043449406	25.06/5926/85
	495.0000000000	5923	5.7669050332	27.0302128934
	505.0000000000	6249	2 9612032764	32 /683996781
	510 0000000000	6403	2 2672456692	34 2073450849
	515 0000000000	6540	7953737578	35 1921679887
	520 0000000000	6686	5 9172876134	35 2685686256
	525.000000000	6813	3.1142062166	34.3577006796
	530.000000000	6927	.0201249201	32.4589148259
	535.0000000000	7027	.4560961555	29.6435317199
	540.000000000	7113	3.4547933899	26.0417382145
	545.000000000	7184	.2753229200	21.8252164304
	550.000000000	7239	0.4088246203	17.1881668765
	555.000000000	7278	8.5758334901	12.3290733614
	560.000000000	7301	.7166573890	7.4350077474
	565.000000000	7308	3.9761739552	2.6696173542
	570.000000000	7300	.6844810250	-1.8347107029
	575.000000000	7277	.3347741168	-5.9805734160
	580.0000000000	7239	0.5596971067	-9.7056509839
	585.0000000000	7188	3.1072422257	-12.9799346815
	590.0000000000	7123	3.8170841064	-15.8009559530
	595.000000000	/04/	.5980370348	-18.18/8844665
	600.000000000	6960).40/13/888/	-20.1/526/42/3
	610,0000000000	6755	0.2300884344	-21.8070310364
	615 0000000000	6643	00/4431022	-23.1311094300
		0042 6521	7524982687	-24.1900014204 -25 0444010001
	625 0000000000	6397	5400824260	-25 7165612590
	630.0000000000	62.62	2.2007745745	-26.2440435391
	635.0000000000	6125	6187660897	-26.6518141443
	640.0000000000	5985	6334378136	-26.9580907352
	645.0000000000	5843	3.0357455957	-27.1750998734

650.000000000	5698.5658063408	-27.3101119214
655.0000000000	5552.9115060031	-27.3665982645
660.0000000000	5406.7079654309	-27.3453910614
665.0000000000	5260.5377164403	-27.2457570229
670.0000000000	5114.9314576281	-27.0663268384
675.0000000000	4970.3692762771	-26.8058481822
680.0000000000	4827.2822385864	-26.4637516762
685.0000000000	4686.0542649896	-26.0405354521
690.0000000000	4547.0242202872	-25.5379852588
695.0000000000	4410.4881596663	-24.9592539892
700.000000000	4276.7016814512	-24.3088277983
705.000000000	4145.8823457320	-23.5924064789
710.000000000	4018.2121250117	-22.8167242324
715.000000000	3893.8398588537	-21.9893341278
720.000000000	3772.8836893810	-21.1183759627
725.000000000	3655.4334585257	-20.2123433862
730.000000000	3541.5530513061	-19.2798623582
735.0000000000	3431.2826722429	-18.3294895229
740.000000000	3324.6410444225	-17.3695360155
745.000000000	3221.6275227636	-16.4079196583
750.000000000	3122.2241148146	-15.4520464502
755.0000000000	3026.3974039547	-14.5087206938
760.000000000	2934.1003712420	-13.5840819762
765.0000000000	2845.2741133650	-12.6835664757
770.000000000	2759.8494552444	-11.8118896291
775.000000000	2677.7484568096	-10.9730470083

UV/Vis Spectrum for [Ru₅Cl₁₂]⁻

#	UV-VIS Spectrum			
#	X-Axis: Excitation	Energy	(nm)	
#	Y-Axis: Epsilon	10	, , , , , , , , , , , , , , , , , , ,	
#	X		Y	DY/DX
	380.0000000000	7459	.1504569778	-40.4004814553
	385 000000000	7154	4489678452	-35 8170427553
	390 000000000	6867	6825942214	-32 5900714482
	395 000000000	6597	2147088760	-30 4856009592
	400 0000000000	6341	1226821284	-29 2263709964
	405 0000000000	6097	5216813398	-28 5777157218
	410 0000000000	586/	7785560496	-28 370/193522
	415,0000000000	56/1	6321116545	-28 /820990631
	410.0000000000	5427	2386277608	-28 80/0320100
	425.0000000000	5221	1616293151	-29 2210906694
	420.0000000000	5023	3234621217	-29 59561321/1
	430.0000000000	1023	0.3294021217	-20 7050102141
	435.000000000	4053	1070607234	-29.6609353261
	440.0000000000	4000	20202007334	-29.000000000000000000
	445.0000000000	4402	1/12760003	-29.1203103932
	455.0000000000	4321	5//20505/2	-26 6267301253
	455.000000000	4170	0701007600	-20.020/301233
	460.0000000000	2000	9146050607	-24./1120400/J
	485.0000000000	2902	.0140039007	-22.441/393031
	470.0000000000	2/00	1702001506	17 2442722522
	475.0000000000	2001	.4/03091300	-1/.2445/55555
	480.0000000000	2500	E240642507	-14.5252496449
	485.0000000000	3300	0.5248642507	-11.8494034739
	490.0000000000	3433	CEOCE07201	-9.2890900598
	495.0000000000	33/3	4006626142	-0.89/9382403
		3323	(7222000142	-4./1194433/3
	505.000000000	3284	4650204702	-2.7518900997
	510.000000000	3252	1067000000	-1.0263623937
	515.000000000	3228	0.126/083303	0.4652323517
	520.000000000	3210	0.8858056470	1.7300292839
	525.000000000	3195	.9/00092951	2.7796063112
	530.000000000	3194	.6160049468	3.6284383275
	535.0000000000	3194	.0812205911	4.2928250144
	540.000000000	3197	.6523098796	4./901/12639
	545.0000000000	3204	.651469/596	5.1384952502
	550.0000000000	3214	.4408343009	5.3560583591
	555.000000000	3226	.4252149371	5.461041315/
	560.0000000000	3240	.0534643689	5.4/12228492
	565.0000000000	3254	.818/32523/	5.4036452778
	570.000000000	3270	.25/86305/9	5.2/42/2480/
	575.0000000000	3285	.9501519663	5.09/6589353
	580.0000000000	3301	.5156592598	4.8866543395
	585.0000000000	3316	.6132329486	4.6521681354
	590.0000000000	3330	.9383736650	4.4030136861
	595.0000000000	3344	.2210395084	4.1458446561
	600.0000000000	3356	.2234649727	3.8851878551
	605.0000000000	3366	.7380455942	3.6235687011
	610.0000000000	3375	.5853214002	3.3617184549
	615.000000000	3382	.6120772868	3.0988470569
	620.000000000	3387	.6895668845	2.8329620357
	625.000000000	3390	./118579413	2.5612125515
	630.000000000	3391	.5942913806	2.2802380198
	635.000000000	3390	.2720425445	1.9865025974
	640.000000000	3386	6987712969	1.6765997305
	645.000000000	3380	.8453472365	1.3475145555

650.0000000000	3372.6986368958	0.9968358252
655.0000000000	3362.2603411514	0.6229128773
660.0000000000	3349.5458728858	0.2249567095
665.0000000000	3334.5832669801	-0.1969127179
670.0000000000	3317.4121168153	-0.6416683689
675.0000000000	3298.0825334796	-1.1074208200
680.0000000000	3276.6541257191	-1.5914981908
685.0000000000	3253.1950002691	-2.0905531904
690.000000000	3227.7807835330	-2.6006890953
695.0000000000	3200.4936666061	-3.1175968478
700.0000000000	3171.4214763948	-3.6366961554
705.0000000000	3140.6567760616	-4.1532743889
710.000000000	3108.2959982641	-4.6626181301
715.0000000000	3074.4386146800	-5.1601333217
720.000000000	3039.1863451624	-5.6414510658
725.000000000	3002.6424095699	-6.1025171464
730.000000000	2964.9108249180	-6.5396642795
735.000000000	2926.0957500163	-6.9496669038
740.000000000	2886.3008792289	-7.3297789902
745.000000000	2845.6288864447	-7.6777558849
750.000000000	2804.1809197961	-7.9918615933
755.0000000000	2762.0561471254	-8.2708631888
760.000000000	2719.3513516969	-8.5140141878
765.0000000000	2676.1605771880	-8.7210287991
770.000000000	2632.5748205790	-8.8920489428
775.000000000	2588.6817711962	-9.0276058549