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Chapter 1: Preliminaries

Course Objective:

The objective of the course is to develop the ability to understand and communicate temporal
and spatial concepts used in contemporary ecology. We will do so by reading and interpreting
the peer-reviewed literature and through consultation with references on statistical techniques.
This seminar course is not, however, designed as a statistics courses, rather it will endeavour to
engage and develop numeracy in this important area. Each weekly session will focus on one of
the selected topics! listed below by providing (1) a “primer” on the method and (2) a critical
evaluation of selected readings2. All participants are expected to contribute to the discussion.
Each student will provide one session on spatial and a second on temporal analysis.

2We will focus on peer-reviewed readings from the following journals: Journal of Geophysical Research, Limnology & Oceanography, Nature,
Proceedings of the National Academy of Science, Proceedings of the Royal Society, and Science.

Course Readings:

Chapter 2 — Primer on Temporal Analysis

Lacasa L., B. Luque, F. Ballesteros, J. Luque, and J.C. Nuno 2008. From time series to complex
networks: The visibility graph. PNAS 105: 4972-4975.

Raupach, M.R., G. Marland, P. Ciais, C. Le Quere, J.G. Canadell, G. Klepper, and C.B. Field 2007.
Global and regional divers of accelerating CO2 emissions. PNAS 104: 10288-10293.

Chapter 3 - Primer on Temporal Smoothing

Carrington E. 2002.Seasonal variation in the attachment strength of blue mussels: Causes and
consequences. Limnol. Oceanogr. 47:1723-1733.

Knudsen, E., A. Linden, T. Ergon, N. Jonzen, J.O. Vik, J. Knape, J.E. Roer, and N.C. Stenseth, 2007.
Characterizing bird migration phenology using data from standardized monitoring at bird
observatories. Climate Research 35:59-77.

Chapter 4 - Primer on Temporal Autocorrelation

Korpimaki, E., K. Norrdahl, O. Huitu, and T. Klemola 2005. Predator-induced synchrony in population
oscillations of coexisting small mammal species. Proc Royal Society B 272: 193-202.

Thirgood, S.J., S.M. Redpath, D.T. Haydon, P. Rothery, |. Newton, and P.J. Hudson 2000. Habitat loss
and raptor predation: disentangling long- and short-term causes of res grouse declines. Proc
Royal Society B 267:651-656.

Chapter 5 - Primer on Spectral Analysis
Emerson, C.W., and J. Grant 1991. The control of soft-shell clam (Mya arenaria) recruitment on
intertidal sandflats by bedload sediment transport. Limnol. Oceanogr. 36: 1288-1300.
Haydon, D.T., D.J. Shaw, .M. Cattadori, P.J. Hudson, and S.J. Thirgood 2002. Analysing noisy time-
series: describing regional variation in the cyclic dynamics of red grouse. Proc Royal Society B
269:1609-1617.

Chapter 6 - Primer on Wavelet Analysis

Cazelles, B., M. Chavez, D. Berteaux, F. Menard, J.0. Vik, S. Jenouvrier, and N.C. Stenseth 2008.
Wavelet analysis of ecological time series. Oecologia 156: 287-304.
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Rouyer, T., J.M. Fromentin, N.C. Stenseth, and B. Cazelles 2008. Analysing multiple time series and
extending significance testing in wavelet analysis. Mar. Ecol. Progr. Ser. 359: 11-23.

Chapter 7 - Primer on Coherence

Aragao, L.E., Y. Malhi, N. Barbier, A. Lima, Y. Shimabukuro, L. Anderson, and S. Saatchi 2008.
Interactions between rainfall, deforestation and fires during recent years in the Brazilian
Amazonia. Proc Royal Society B 363: 1779-1785.

Platt, T., and K.L. Denman 1975. Spectral analysis in ecology. Annual Reviews 6: 189-210.

Rowe, P.M., and C.E. Epifanio 1994. Tidal stream transport of weakfish larvae in Delaware Bay, USA.
Mar. Ecol. Progr. Ser. 110: 105-114.

Chapter 8 - Primer on Spatial Distribution

Arocena, J.M., and J.D. Ackerman 1998. Use of statistical tests to describe the basic distribution
pattern of iron oxide nodules in soil thin sections. Soil Sci. Soc. America J. 62: 1346-1350

Frohlich, M., and H.D. Quednau 1995. Statistical analysis of the distribution pattern of natural
regeneration in forests. Forest Ecol. Manag.t 73: 45-57.

Morales, J., J.J. Martinez, M. Rosetti, A. Fleury, V. Maza, M. Hernandez, N. Villalobos, G. Gragoso,
A.S. de Aluja, C. Larralde, and E. Scuitto 2008. Spatial Distribution of Taenia solium Porcine
Cysticercosis within a Rural Area of Mexico. PLOS 2: 284-290

Chapter 9 - Primer on the Use of Indices to Determine Spatial Patterns

Hurlbert, Stuart H., 1990. Spatial distribution of the montane unicorn. O/KOS 58: 257-271.

Stephanis, R., T. Cornulier, P. Verborgh, J.S. Sierra, N.P. Gimeno, and D. Guinet 2008. Summer
spatial distribution of cetaceans in the Strait of Gibraltar in relation to the oceanographic
context. Mar. Ecol. Progr. Ser. 353: 257-288.

Chapter 10 - Primer on Spatial Smoothing

Akhtari, R., S. Morid, M.S. Mahdian, and V. Smakhtin 2009. Assessment of areal interpolation
methods for spatial analysis of SPI and EDI droughts indices. Inter. J. Climatol. 29: 135-145.
Conrad, K.F., I.P. Woiwod, J.N. Perry 2002. Long-term decline in abundance and distribution of the

garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106: 329-337.

Chapter 11 - Primer on Spatial Autocorrelation

Koenig, W.D. 1997. Spatial autocorrelation in California land birds. Conserv. Biol. 12: 612-620.
Koenig, W.D., and J. Knops 1998. Testing for spatial autocorrelation in ecological studies. Ecography
21:423-429

Chapter 12 - Primer on Spatial-Temporal Analysis

Aukema, B.H., A.L. Carroll, Y. Zheng, J. Zhu, K.F. Raffa, R.D. Moore, K. Stahl, and S.W. Taylor 2007.
Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal
patterns and climate. Ecography 31: 348-358.

Moss R., D.A. Elston, and A. Watson 2000. Spatial asynchrony and demographic traveling waves
during red grouse population cycles. Ecology 81: 981-989.
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COMPONENTS OF A SCIENTIFIC PAPER
A GUIDE TO SCIENTIFIC COMMUNICATION

© 2005 J. D. Ackerman

The Nature of Scientific Reports

This is the major form of scientific communications that exist for both students and professional
scientists. It is the vehicle for reporting the results of scientific inquiry. These inquiries are based
on the use of the scientific method, which aims to identify data through experimental methods
(i.e., the hypothetico-inductive approach) or theoretical development (i.e., Modelling) that are
objective, replicable (repeatable), and predictive of future inquiry. In this sense, the approach of
science is incremental as it builds on existing data. It is essential that scientific reports identify
the purpose or relevance of the work as well as provide an indication of the “take-home
message” or conclusion of the study. This can only be achieved through a discussion of other
works in the scientific literature.

The best way to improve your communications skills is to read as much as possible. You should
refer to the journal articles to determine why the scientist used a particular form of
communication (e.g., a scatter plot versus a bar chart). This will help you in developing your
style.

Cover Page
A cover page with the appropriate information pertaining to the assignment and authorship (e.g.,
Title, Date, Name, Student Number) is required.

Presentation

The presentation of scientific reports is of great importance, and care must be taken to ensure
that it is legible and consistent in style. The presentation should be double spaced throughout
including the abstract. The pages should be numbered consecutively beginning on the first text
page (i.e., the page after the cover page). The page number should appear centered at the bottom
of the page (i.e., as a footer).

Abstract or Executive Summary

An abstract is a short/concise paragraph(s) that describes the motivation/ relevance, hypothesis
examined, techniques, findings and conclusion/significance of the study. It is meant to provide
the reader with a guide to what is reported in the main body of the paper. Figures, tables, and
citations to the literature are not included in this section. With the large volume of literature, it
may be the only part of a report that is read (e.g., on-line search) and is, therefore, probably the
most important part of the report. Be sure to end the abstract with a concluding statement
outlining the relevance and implication of the major finding.

Introduction
The Introduction provides the background for the study as well as identifying the relevant
hypothesis that will be examined. It usually begins with a brief review of the scientific issue
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related to the report and describes the findings of other researchers. The presentation is usually
from the general to the more specific and this provides a perspective to the reader. The review
also provides an opportunity to identify the theoretical foundations of the subject, gaps in our
understanding, and areas of inquiry that require additional examination. In essence, it provides
the motivation or purpose for undertaking the study and, presents the hypothesis to be
examined.

Materials and Methods

The Materials and Methods section provides a relatively complete description of the
methodology that was used in the study. It should be detailed in such a way that any other
scientists can replicate the study, although it is not necessary to detail accepted/common
techniques that exist in the literature (journal articles and/or texts). These techniques should be
referred to as citations and any modifications to them should be stated clearly.

This section can begin with an explicit statement of the Null Hypothesis (i.e., the results of the
different treatments are equal) to be tested or this can be incorporated within the text. In some
cases, it is appropriate to provide section headings for particular portions of the study such as,
“study site”, “survey design”, “laboratory analysis” and “statistical analysis”. The general
approach is to report what was done chronologically. Generally, you should not report the

motivation for your choice of techniques, nor should you report any results in this section.

Results

The Results section provides an opportunity to present the findings or the data revealed from
your scientific inquiry. This is achieved through describing in prose what was observed as well
as providing tabular and/or graphical results to illustrate the description. Both of these elements
are necessary for the report and it is generally useful to include tables and/or figures in the text
rather than at the end of the report. As was stated above, it can be useful to include subheadings
if these are meaningful and help to clarify the report. The results should be presented but not
discussed. Remember that your data are never wrong but your interpretation may be. Therefore,
there should be no interpretation of the relevance/significance of the findings with respect to
the Null Hypothesis or the literature, as these are included in the Discussion section.

Data - Data are plural and should be referred to in this manner (i.e., “the data were...”).
Consequently and as a result of uncertainty in our techniques, measurement error, etc., it is not
generally possible to refer to a single result. Rather, we refer to the distribution of the data by
including the mean (central tendency) and the standard error (dispersion) of our observations.
The standard error (standard error = standard deviation/square root of the sample size) allows
us to compare the results of different experiments and is the basis of many statistical tests. It is
also important to account for uncertainty and track the propagation of errors within reports (see
section on Statistical Analysis).

Figures - Figures provide an illustration of what was undertaken or what was found in a
scientific inquiry. It is important to note that schematic representations of equipment
configurations and site maps are extremely useful to include in reports. In terms of the reporting
of results, it should be recognized that different types of figures are used for different types of
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data. For example, bar charts are used for reporting categorical data, while scatter plots are used
for data that vary with another factor such as time or concentration. You should note the mean
and standard error in the graphical presentation. It is important to ensure that figures are as
self-explanatory as possible so that a reader can understand them without referring to the text.
This is achieved through careful consideration of (1) the labeling of constituent elements (e.g.,
axes), (2) the inclusion of units and equations (if necessary), and (3) the figure title and legend.
Be sure to use scale bars for all drawings, and some form of direction indication (e.g., arrow) for
all maps. It is generally acceptable to present figures at the end of the report to avoid formatting
errors when there are a large number of figures.

Tables - Tables provide an opportunity to present results that are not amenable to graphical
presentation. These may be in the form of lists of results or summaries. As above, it is important
to ensure that tables are as self-explanatory as possible so that a reader can understand them
without referring to the text. This is achieved through careful consideration of the labeling of
rows and columns along with units and, and the use of table title and legend.

Discussion

The Discussion section is where you interpret the relevance/significance of your findings with
respect to the Null Hypothesis and the scientific literature. In other words, this is where you
explain the meaning of what you found. You should work from the specific to the general to show
both what your results mean in the context of the study and within the context of the scientific
literature. Generally you would begin with a statistical examination of the data and you would
either accept or reject the Null Hypothesis. This would be followed by a treatment of the
implications of acceptance/rejection of the Null Hypothesis and the significance of this
evaluation.

This section is where you would address the questions posed in your Introduction. You should
endeavor to incorporate your findings into the larger context of scientific understanding and
literature. The limitations of your approach, ways to improve it, and potential future inquiries,
can also be presented.

Conclusions

The Conclusion section provides you an opportunity to express the principal findings from your
scientific inquiry. It generally is a brief paragraph(s) in which you report your findings and the
relevance/significance of these from the perspective of your hypothesis and the literature. It
concludes the report by addressing the issues, questions, and hypotheses posed in your
Introduction section. In many cases, the conclusions may include new hypotheses, issues and
hypotheses.

Literature Cited

This is where you provide the bibliographical information for literature that you referred to in
the report. You should only include literature that was cited since this is not a bibliography.
Please note that Internet sources and class notes are not permitted (i.e., do not cite any
information that was not found in a credible scientific source). There are several accepted ways
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in which to cite literature (e.g., CBE) and these can vary according to the specific journal. Please
use the following as a guide for your reports:

Journal Article.
Ackerman, ].D., Loewen, M.R,, and P.F. Hamblin. 2001. Benthic-pelagic coupling over a zebra
mussel bed in the western basin of Lake Erie. Limnology and Oceanography 46(4):892-904.

Book.
Lobban, C.S. and P.J. Harrison. 1994. Seaweed Ecology and Physiology. Cambridge University
Press, New York. 366 pp.

Book Chapter.
Givnish, T.J. 1989. Ecology and evolution of carnivorous plants. pp. 243-290 In: W.G.

Abrahamson (ed.) Plant-Animal Interactions. McGraw-Hill, New York. 480 pp.

Technical Report.

French, T.D. and P.A. Chambers. 1995. Environmental factors regulating the biomass and diversity
of macrophyte communities in rivers, with emphasis on the Nechako River, British Columbia,
Canada. Report # 000 prepared for the BC Ministry of Environment, Prince George and Victoria.
114 pp.

Appendix

This is where you would include supplementary information that does not belong within the text
of the report, but is relevant for the study. Copies of your original data forms, chart recordings,
etc., would be included in an Appendix.

Note on non-experimental papers

Under certain circumstances (e.g., review articles, position papers), the traditional reporting
methods described above may not necessarily be followed. (This is especially true for the
Materials and Methods section, although in many situations, data selection and analysis are
described in the M&M). In these cases, it is customary to deviate from these approaches through
the use of headings to direct the reader. For example, headings may include: Abstract,
Introduction, Literature Background, Position Statement, Alternative Views, Supporting
Evidence, Discussion, Conclusions, Literature Cited.
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Statistical Distributions

(1) Continuous distributions
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forxz > 1{
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b xp>0

Power Normal Distribution f(-'l'?,P) = p:,ﬁ(:r) ('I’(_-'E))p

Power Lognormal Distribution
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numerically
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Tukey-Lambda Distribution No simple, closed form, so must be computed

E—[L P
e f g "

Standard Gumbel Min =

f: x—afh— )yt
LJ flx) = (B(p?;)(bEG)P+L_1 a<zr<bhpg>0

e Beta Distribution

1
B = | Y1 — gt
o Blap) = [ et—g



Spatial and Temporal Analysis in Ecology: A Primer
11

Pl — pye-t
x) = ( ) 0<x<Lpg>0
Standard beta B(p,q) a=0,b=1

(2) Discrete distributions

Binomial Distribution

P(I?p?n) - ( : ) (p)ﬂ:(l _P)m_ﬂ:} for x :0,1,2,”*,’.’1

( n ) . n!
Where \ ¥ 3:![” _5":)!

forz=0,1,2,---

!: —Anr
“;”H“h:. (2, 0) = £

. L . P
Poisson Distribution x!

See:
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898 /handbook/,

date.

http://www.itLnist.gov/div898/handbook/eda/section3/eda366.htm
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CHAPTER 2: PRIMER ON TEMPORAL ANALYSIS

Josef Daniel Ackerman

¢ Time Series: Many variables fluctuate in time (e.g., water speed; bird sightings), when
measurements are made through time

sowe have U = mean speed

u

~

A Cosine
Nictribhiits

e

u' = fluctuation from U

u =instantaneous speed

t (s)

u =U=+u

¢ Fundamental Question: Are observations close in time more related (dependent)?
e Discrete Time Series vs. Continuous Time Series - type of sampling
e Eulerian Observation vs. Lagragian Observation - frames of reference

¢ Underlying Process vs. Modeling/Forecasting - motivation

e Patterns in time series

I - Systematic Patterns

¢ (1) Seasonal effects: - annual variation: summer vs. winter; diurnal effects, lunar

¢ (2) Cycles and Quasi-cycles: - pattern that is not seasonal

{a) Monithly sea-nuface Mmpeararires

30 -
Eo M AMAN WY -
20
s

15

1965 19T 187s 1980 1985 1990

Tear
(b} Mesn monthly patier

L]
=
N LAY AV AVAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY,
£ Il
-

15

IRES 1570 1975 1980 1985 1980

Yaar
ie) Ancenalies

L]

'
=
E 2
g2 o
< 5

BT 10T 1975 1980 1885 [

Yuor
Figure 13.2 Time series of sea surface temperaiunes observed on the shore ag Academy L

Santa Cruz, Calapagos, 1965—1990. (a) Original series; (b) mean monthly remperatures; i
anomalics. Reprinted by permission of the Charles Darwin Research Station.

(Brown and Rothery 1993)
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¢ (3) Trends: a smooth underlying, long-term change not seasonal

¢ (4) Residual or Random Variation: - irregular fluctuations

II. Types of Random Variation
e Recall:

0 Random Numbers from a (1) random number table (tabulation) or via a
(2) pseudo-random number generator (e.g. seed # to start the process).

0 Random variable is subject to “chance fluctuations” that are confined
within the bounds as N(0, 62) - i.e., “uniformly distribution random”
variable, stochastic.

e (1) Stationary Time Series: - random variation with or
without serial dependence.

e (Can be inherently stationary vs. where systematic
trends have been removed.

¢ (1) mean, (2) mean square, and (3) ACF
(autocorrelation function) do not vary with changes
int.

¢ (2) White Noise: - this is an example of a stationary T.S., 1/t
=u+z: wherez ~ N(0, [2). Observations are serially
independent; has a spectrum of ~f©

¢ (3) Pink Noise - intermediate between white and pink, has
a spectrum of ~1/f

¢ (4) Brown Noise - values not independent but the
increments are, has a spectrum of ~1/f 2 - may be good
predictor of turbulence

e Analysis of Time Series (Schroeder 1992)

e Time domain - statistical approaches, autocorrelation etc
¢ Frequency (f = 1/t) domain- spectral analysis, wavelet analysis

e Statistical Representation

e Graph the information using appropriate temporal scale
e Measure central tendency, and variation (more important?)
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e Time average
e Mean value of the time series
e Ensemble Average
e Average the results of all occurrences that occur at time t = t as replicates, i.e.,
consider the separate time series as "replicates”
e Ergotic
e time series is ergotic if it is stationary (mean is the same for any t;1) and the
time average is the same as the individual ensemble averages

e Transients
e sometime you get a burst (or gust) that looks like a non-stationary process
e indicate that the series is not ergotic

e Decomposition

e Decompose the time series into its components. (e.g., trend; cycle, season,
“noise” or residual) e.g., Observation = trend + cycle + seasonal variation +
random variation

e Same dataset as above:

March April May 97

Fig 2 Wi fevel signod froen site GOV (Tor exemple, see Fgmer [) and exrachion of residoal e
pressure signal o) Raw sigeal; b rw sigoa, ifpart, o Bdal smoded fi; d) air peessure influence,
hiparr; e restdual htstgmal, ) row sigrmal fean: g} o pressure influemce, Kpart: h) residal i
signal Tick manks on vertical axis denoie cemimeters,

Ciupta, H.K., [. Radhakrishna, B K. Chandra, H.J. Kumpel, and G, Greckshe. 2000, Pore
presswre studies initioted in arca of reservair-indoced canbguakes in Indin. Sos
B1{14%:145-151.

¢ Identify patterns

(1) Cyclical Patterns ~ Review of Periodic Function

AN N .
O Py \\/
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¢ Consider the cosine curve
e Four steps to describe the function y=cos a
e t=independentvariable; o - phase angle (depends on t), I = unknown period
60° 2r
(D SsOa = i t or a:Tt
. 360> 27 L
if o= or —, o =angular frequency, which indicates how often [

I
occurs in 1 rotation (3602 or 2 rad.)

a=ont or y=cosot

If there is no peak at t = L/then it occurs atto 0 < t, < [
Soifthereisapeakatt' =t+t,oratt=(t -t,), butwe dropt (i.e., a delay)

(2) Now y=cos m (t-t,), where t, = arc phase position when first peak occurs

(3) What about the amplitude (we not dealing with a perfect curve: -1 <cos ®<1)
Add factor “c”, y=ccoso (t-to)

(4) What happens if y oscillates around c by ¢,?
Y =Co+CCOSO (t-to)
alsorecall that: cosw (t-t,) =cos(wt- wt,)
= cos ot cos ot, + sin ot sin ot

but: cos Wt, + Sin ® t, = constants: a = cos o t,, b = sin wt,

So: Yy =co+acosot+bsin ot alsoy =co+a cos2nft + bsin2znft

This is the general form that we use to describe any periodic function

References:

Bendat, . S. and A. G. Piersol. 1986 Random data: Analysis and measurement procedure, 2nd
edition, John Wiley.

Brown, D.,

Schroeder

Rothery, P. 1993. Models in Biology: mathematics, statistics and computing. ]. Wiley.

M. 1992 Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H.

Freeman.
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Chapter 3: TEMPORAL SMOOTHING
Justin Sheehy

What is smoothing?

Smoothing is a statistical technique in which an approximating function is created in an attempt to
capture important patterns in a set of data, while leaving out noise or other fine-scale structures/rapid
phenomena. It is a process by which data points are averaged with their neighbours in a series, such as
a time series. This process tends to blur the sharp edges in the data, giving it a “smoother” appearance.

Benefits of Smoothing Data
e Great for seperating general trends and broad patterns from noisy data
e Gives a better visualisation of variation across space and time
e Maximises access to data that would otherwise be hidden

Problems with using Smoothing Data
e Smoothing data transforms the data
e Smoothed data is correlated based on kernel

Types of Smoothing
Note: There are several types of smoothing, but this primer will only focus on the statistical or
mathematical forms of smoothing which are typically used in temporal (or spatial) studies.

Moving average

e Also called a rolling average or running average

e Can be applied to any data set, but commonly used with time series data to smooth out short-
term fluctuations and highlight longer-term trends or cycles.

e Often used to try to capture important trends in repeated statistical trials

e Creates an average of one subset of the full data set at a time with each number in the subset
given an equal statistical weight.

e Not a single number, but it is a set of numbers, each of which is the average of the
corresponding subset of a larger set of data points.

e For example, if there is a data set (N = 50), the first value could be the moving average or mean
of data points 1 through 10. The next value would be the mean of data points 2 through 11, and
so forth, until the final value, which would be the mean of data points 40 to 50.

e The subset size being averaged is often constant, but does not need to be.

Simple Moving Average

A simple moving average (SMA\) is the unweighted mean of the previous n data points. For example, a
5-day simple moving average of population abundance is the mean of the previous 5 days abundances.
If those abundances are pm, Pm-1... Pm-2 then the formula is:

SMA: pM + pM—1+ et pM—4
3)
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Central Moving Average

A problem with simple moving averages is that they create a shift in the data, induced by only using
“past” data. For many temporal and spatial studies, it is optimal to avoid this shifting, thus a central
moving average can be determined using both “past” and “future” data. The “future” data in this
calculation are not predictions, but simply data that was obtained after the time at which the average is
to be calculated. If one was to calculate the CMA for a data set using the previous 5 days of
information and the 5 days after the data point, the formula would be:

CMA= pm—5+ ot pm—1+ pm+1+ Lt pm+5
10

Example

For example, a fictitious researcher measured the number of termite larvae hatched daily for 80 days,
and determined the proportion of larvae which survived each day. The original information was
recorded and put into a histrogram (Figure 1), which can be seen on the following page. At first, no
trend could be seen over the 80 days could be seen. Therefore, the researcher decided to perform a
central moving average smoothing technique in an attempt to find any patterns.

The researcher found that performing a CMA with only 1 value on each side did not present any
patterns but by using 5 (Figure 5) or 10 values (Figure 6) on each side presented a relatively clear
trend. The proportion of surviving hatchlings appears to go through cycles of higher and lower
survival rates.
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Figure 1: The raw data from the study.
There does not appear to be any trends in
the information.

Figure 2: Data after CMA smoothing,
using 1 value on each side of data point.
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Figure 3: Data after CMA smoothing,
using 2 values on each side of data point.

Figure 4: Data after CMA smoothing,
using 3 values on each side of data point.
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Figure 5: Data after CMA smoothing,
using 5 values on each side of data point

Figure 6: Data after CMA smoothing,
using 10 values on each side of data point
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Cumulative Moving Average
e Also called a long running average
e A type of moving average where each value is the average of all previous data points in the full
data set.
e The size of the subset being averaged grows by one as each new value of the moving average is
calculated.

The formula for the Cumulative Moving Average, which is usually an unweighted average, for i data
points would be:

CMA,

XXyt X
[
The formula for the Cumulative Moving Average, for the following data point would equal:

CMA, , = CMA, + s =CMA,
1+1

Thus the current cumulative average for a new data point is equal to the previous cumulative average
plus the difference between the latest data point and the previous average divided by the number of
points received so far. When all of the data points arrive (i = N), the cumulative average will equal the
final average.

Weighted Moving Average
e A moving average which has multiplying factors to give different weights to different data
points.
e Has the specific meaning of weights which tend to decrease arithmetically.

An example of a weighted moving average would be;

WMA,, = an +(n_1) pM—1+ "'anM—n+2+ pM—n+1
! n+(n-1)+..+2+1

where each day has a different weighting in the average.
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Kernel Smoothing

e The statistical technique for estimating a real valued function with the use of a Kernel.

e A Kernel defines the shape of the function that is used to take the average of the neighbouring
points. For example, a Gaussian kernel is a kernel with the shape of a Gaussian (normal
distribution) curve.

e Basically, Kernal smoothing is fitting a shape into the random data, to remove some of the
noise in the data

Steps to Kernel Smoothing

The following figure shows a data series, made of random numbers, taken over 40 days. At first, it
appears that there are no trends in the information and therefore smoothing should be performed to see
any trends which may be hiddin in the information.

1F
. I| i | |
-1

-2

5 10 15 0

Figure 1: The raw data for the study. No trends can be
seen and there appears to be Noise in the data. *
(From MRC, 1999)

1) The kernel (or shape of the curve) in
which the data will be fitted is chosen. In this
example, the Gaussian (Normal) curve is
used.

0.3
0.25 -

0.2+

Note:

In most statistical analyses, the width of the
Gaussian curve is in terms of sigma () or
standard deviations. However, when the cost
Gaussian curve is used for smoothing, the o
width of the curve is defined using the Full

015
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Width at Half Maximum (FWHM). The FWHM is the width of the kernel, at half of the maximum of
the height of the Gaussian. Therefore, for this example, the maximum height is around 0.4. The width
of the kernel at 0.2 is the FWHM. At x =-1.175and 1.175 (when y = 0.2), the FWHM equals 2.35.
Therefore, 2.35 is the FWHM for this example.

0.25

2) For each data point, a new,
smoothed value (that is a function of the

original value at that point and the
surrounding data points) is calculated. For
this example, a Gaussian smoothing, the ol

function that is used is a Gaussian curve
with a FWHM value of 4 x-axis units. To
generate the Gaussian kernel average for a
data point, the Gaussian shape is centred

over that value on the x-axis. All of the ogsy
values in the Gaussian curve are then
divided by the total area under the curve, R

so that the values add up to 1.

The Gaussian Curve centred over the
14" value in the data set. (From
MRC, 1999)

3) The values of the resulting function (in this case a Gaussian function) are generated for each of
the points in the data.

For example, In this case:
The Gaussian values for 12,13,14,15 and 16 ozs
are:

0.1174, 0.1975, 0.2349, 0.1975, 0.1174
and the data values for the points are:

1.0645, 0.3893, 0.3490, -0.6566, -0.1946

4) The Gaussian values are multiplied by

the data values, and the results are added up to get . )
the new smoothed value for each point. The values calculated using the Gaussian
function centred over the 14™ value

(From MRC, 1999)
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5) The value of each new smooth point is kept and the smooth value is then calculated for the next
data point. The result is a smooth version of the original data.

06

Q.
a.
Il““l I|“I |II||._I. I
—0.4b
o8l

The new, smoothed data for the study. Most of
the noise has been eliminated and patterns can be
seen more clearly (From MRC, 1999)

N

P

Kernel Functions
Several types of kernels functions are used in temporal and spatial studies. The following are the
equations for each function and a graph of their shape/distribution.

Note: In the notation below, 1, means that the function is multiplied by 1 when p is true, and 0 when
p is false.

Uniform

K , A uniform distribution
(U) (|u|<1) L _ (From Wikipedia, 2009)




Triangle

K(u) = (0~ [ u )Ly

Epanechnikov

K(u) =%(1— U ey

Quartic

K() =12 00

Triweight

K(u) = % - u2)31(|u|£1)

.....

A triangular Distribution
(From Wikipedia, 2009)

An Epanechnikov
Distribution (From
Wikipedia, 2009)

A Quartic Distribution
(From Wikipedia, 2009)

A triweight Distribution
(From Wikipedia, 2009)
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Guassian
1
B > | .
K(u) = 27 ¢ A Gaussian
' ' Distribution (From
— | Wikipedia, 2009)
Cosine
T T : . | A Cosine Distribution
K(u) = ZCOS(E U)L ity _ ' | (From Wikipedia,

2009)

Spline Smoothing
e The process of fitting a smooth curve to a set of noisy observations with a spline function

Unlike the previous smoothing types, spline smoothing has 2 goals:
1. To obtain a “smoother” set of observations
2. To maintain proximity to the actual sample data points

To accomplish goal number 2, a roughness penalty is defined. The smoothing spline estimate, z, of
the function is defined as a minimizer in the following formula:

D00~ k) + A f (07

The first part of the formula is the sum-of-squares and the second part is the roughness penalty, which
includes the smoothing parameter, A.. The smoothing parameter controls this created trade-off between
proximity to the original data and roughness of the function estimate. Therefore, if A =0, no
smoothing will occur, and if A is approaching an infinitely high value (o) the roughness penalty would
be infinitely large and the estimate converges to a linear least-squares estimate.

A typical sline used in statistics is the cubic spline, as this spline allows for easy formation of both first
and second derivatives. An example of a cubic spline would be;

Si(x)=a(x— Xi)3 +b, (X - Xi)2 +C;(X—X;) + d;
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The first and second derivatives of this function would be;
Steps to fitting a Smoothing Spline Function

1. Using the spline function, derive the z(x;) values for all of the values
2. From these calculated values, derive z(x) for all x

References

*Anonymous. An introduction to Smoothing. MRC. August 19 1999. Date Visited: Friday, January 9
2009.

http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesSmoothing

**Anonymous. Kernel (statistics). Wikipedia. Date Visited: Friday, January 9 20009.

http://en.wikipedia.org/wiki/Kernel (statistics)
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CHAPTER 4: PRIMER ON TEMPORAL AUTOCORRELATION
Mike Janssen

1. Recall Correlation?

X1y
X1|y1

x2|y2 We want to know is x linearly associated with y, so a data point is created from

X3|y3

the sample correlation coefficient is given by:

r

Examples: Mike’s Data on Marbled Murlets
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each pair of (x;, yi) and we look for a trend.
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2. What is temporal autocorrelation?
Synonyms: serial dependence, serial correlation

Definition: Temporal autocorrelation occurs when the course of a time series is
influenced by it’s recent past, or put another way: when successive observations are

correlated.

Example: Model Time Series

25

20

15

Temp (C)

10

0 +— — — — — T — — — T — — \
0 4 8 12 16 20 24 28 32 36 40 44 48

Time (Hrs)

The temperature at any time (y:) is the result of the temperature in the previous hour (y:
1) and a host of other meteorological variables.

3. Why is it important?
Serial dependence violates the assumption of independence between observations, necessary to
most of the statistics we are familiar with.

Example:

Comparing means:

- A sample average will tend to drift away from the long run mean
- values tend to be closer to each other than would be expected for
independent observations.

If our goal is to decompose a time series, we need to be able to account for the influence of
autocorrelation before we can properly understand the influence of our explanatory variables.
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4. Measuring Autocorrelation

Consider a time series: yji, y2, V3, Y4...yn or: 1,3,5,7...n

Y [Y1 OTF Y Va1
yi|yz 13 ?é We want to know whether Xx; is linearly associated with X1,
y2|y3 cl 5 s0 a data point is created from each pair of (x;, Xw1) and
3|y plotted.
Lag 1l
. r1 is the autocorrelation coefficient for a time series
A 34 ¢ with lag of 1
Yo ’* . . .
n o% o > (Y- Y)(Yer1-Y)
- (N R r= t=1
> . . 1 n
= 2
. rn=0.9 tzl(yt_ y)
Yt
n-k
We can calculate the autocorrelation T; (ye- Y)Yerk - Y)
function for any lag ‘k’ using the equation: r, = —
2
> (yy)
=1
Lag 2 Lag 3
. .
* * . * o PN
o o
oo . 0: . . 20
© * P . .o
i ¢ * * 3‘ :; 23 ‘:" ¢ A4
* :00’“
* ¢ ”
r,=0.5 ¢ r=0.1

yt yt
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5. The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF)
The autocorrelation coefficients can be plotted to create the autocorrelation function (or
correlogram)

1
0.8 -

0.6 - . . . .
0.4 - Visual inspection of a correlogram can provide

0.2 useful information about the nature of our data

0 —~~—s series.
_02 i

Iy

-0.4
-0.6 1
-0.8 1

-1

Alternating series: If successive observations lie on opposite sides of the mean then the ACF will
alternate between negative and positive values.

Trends: If a series has a trend (therefore not stationary) then values of rx will not come down to
zero except for very large lag values

Cyclical or Seasonal series: If the data is cyclical, the ACF will also oscillate with similar frequency
to the data series.

White Noise: If the observations are independent, then rk values will all be near zero.

But is the effect of r; real, or is it the result of the influence of yo on y1 and y; on y2?
Partial correlation refers to the autocorrelation present at a given lag while controlling for the
autocorrelation at intermediate lags.

Using the autocorrelation coefficients of lag 1 (r1) and lag2 (rz) we can calculate the partial
autocorrelation coefficient of lag 2:

r,—

1=
1-r

0.5 A

We can plot the result to give the Partial

Autocorrelation Function (PACF) -0.5 1

Partial autocorrelation
o
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6. Determining if autocorrelation is present (and significant)

For a long series of white noise with n observations:

rc is normally distributed with mean 0 and
variance of 1/n. So in 95% of cases rx will lie
between + 2/ \n. Therefore, if 1y IS outside
these boundaries, you can be 95% sure that
you do not have white noise, and your data are
not independent of each other.

< OS> oo co o= T

- Data that goes for long “runs” away from the long term mean is likely autocorrelated.

Another test of serial dependence is the runs test, for details see pp. 448 -450 in Ramsey and
Shafer (2002).

7. Autoregression (AR) and the Moving Average (MA) model
- Often a scientist will seek to create a mathematical model that “fits” observed data, or
produces an output that matches well with observed data.
- One can use an autoregressive scheme to incorporate serial dependence into a model.
An example of a linear 15t order autoregressive scheme AR(1) is:
Ye-p=o(Ye1-p) +Ze
Where:
I = series mean, a = autoregressive parameter, Z¢=random error term
- Another way to incorporate serial dependence into a model is to use the moving average
model.
An example of a 15t order moving average model MA(1) is:
Yt— n= ¢1Zt.1+Zt
Where:

1 = series mean, ®1 = Moving average parameter, Z¢=random error term at time t,
Zi1 = random error term at time t-1.
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Often an autoregressive scheme is used together with a moving average to create an ARMA
model.

g)(icrln”ll)ll,rllemg an AR model of order p =1 AR(1), and a MA model of order q = 1 MA(1), gives an
ARMA(1,1) of:
Ye-p= a(Ye1-p) + P1Ze1+ Z;
8. Autoregressive Integrated Moving Average Models (ARIMA)
- ARMA models require a stationary time series

- Often a time series can be differenced until it appears to be stationary
- When this differencing gets incorporated into the ARMA, it becomes an ARIMA model

References/ Further readings:
Brown, D. & Rothery, P. Chapter 13: Statistical Analysis of Pattern and Sequence: Temporal and
Spatial Series and DNA Sequences, in Models in Biology: Mathematics, Statistics and

Computing. John Wiley and Sons. Ontario.

Chatfield, C. 2004. The analysis of time series, An Introduction, 6t Ed. Chapman and Hall, New
York.

Diggle, P.J. 1990. Time Series: a Biostatistical Introduction. Clarendon Press, Oxford.

Ramsey, F.L. & Schafer, D.W. 2002. Chapter 15: Adjustment for Serial Correlation, in The
Statistical Sleuth, A course in methods of data analysis. Duxbury, New York.

Scheiner, S.M. & Gurevitch, J. 2001. Design and Analysis of Ecological Experiments, 2nd Ed.
Oxford University Press. New York. pp 158-177.
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CHAPTER 5: PRIMER ON SPECTRAL ANALYSIS
Timothy ]. Bartley

I. What is Spectral Analysis?

e A method of decomposing a time series into functions representing the underlying
cyclical components of variable frequency and determine which periodic components
contribute to the variance of the variable of interest

e Tools like autocorrelation are used to test for serial dependence, but spectral analysis is
used to quantify the underlying mathematical patterns

e Accomplished by partitioning the variance between different cycle lengths

e Also known as spectrum analysis

II. Some Reminders

§
2
o -
0 \ — \\ . y=crasino(ttt)
2 | |
0 2T 4
Where: c is equivalent to the mean of the time series

a is equivalent to the amplitude
2r

eriod

wis equivalent to 27 e frequency or (because f = 1 )
T

to is equivalent to the phase (or lag)
t is the counter of time through N observations

e The general form for a periodic function is:

R e e e

y =C + acos(wt) + bsin(at)

AR posonosons, - A mathematically convenient and simple
Seheacacare = representation of cycles, but other waveform
functions can be used for these analyses

s : The Fourier Theorem: a periodic function can
AR, : be expressed as the sum of a series of sine and

; ﬁmnwwmwm f=is cosine terms.
| | -

&WAW«WV‘NJWNI PRAAAAAAA Y

FW.I‘MWWM’W‘{I FVWM\MWMV'MJ\I E"ﬁAWJWU"NM'&I f=15
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III. Some Considerations

e Does the time series contain:

o
o
o

OO0OO0O0O0O0OO0OO0Oo

At least one full period(required for the following analyses)

Sufficient number of data points (a minimum of 50 is recommended)

A number of observations that is a multiple of the expected period (if this is
known)

Variance in y (otherwise these analyses may not be useful)

A normal distribution in measurements (transforming the data may be required)
Outliers (these will interfere with the detection of periodicity)

Equally spaced time intervals (required for the following analyses)

Missing data points (these will need to be estimated)

Stationarity(required for the following analyses)

Trends (these must be removed before the following analyses)
Autocorrelation (to be sure a pattern exists in the data)

Frequencies expressed in radians (required for the following analyses)

Synopsis: Before doing spectral analysis, examine your data.

IV. Univariate (Single) Spectral Analyses

a.

Harmonic Analysis

e Used if the period 7s known a priori or from the literature
e Atype of regression analysis that estimates the mean, phase and amplitude

X, = pu+ acos(at) + bsin(wt) + ¢ for t=(0,1, 2,..., N)
Where: L is the mean of the time series of X
2r

wis equivalentto 27 f or—
z'

gare residuals uncorrelated with the periodic terms
t is the counter of time through N observations

e Varying a and b varies the relative weight of the sine and cosine functions
¢ The total amplitude (r) of the time series is:

e The mean and coefficients are estimated as follows:
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-1 _ 2 _ _ 2 .
p==>X, a=—» (X, -X)coset  b=-(X,~X)sinot
N t=1 Nt=1 Nt=1

e To asses how well the period rfits the observed data, calculate the expected values using
that period and conduct an ordinary least squares regression, with R representing the
goodness of fit of the model, and overall amplitude estimated with r

¢ To test for the significance of the model, a test for white noise in the residuals is required,
then the significance of the R? can be tested

Synopsis: Harmonic analysis estimates the parameters of an underlying periodic function when
the period is known.

b. Periodogram Analysis

¢ An expansion of harmonic analysis for a series of periods
e Used when there is no known period
e Related to ANOVA

e Used to estimate which frequencies account for a large percentage of variance in the
variable of interest

1. Divides the time series of length N into % sinusoidal waveforms

with cycle lengthN N N N

— =, = e, (or 2)
N
1’2" 3 A

2 7 2 7 2 7
1 1 A 1
AR
1 - -1 - 1 -
2 - -2 - 2 -
Period = a Period = a/2 Period = a/3

2 7 2 7

1 1

OWU O-lUﬁUDUﬂUDU

-1 - -1

2 - 2

Period = a./4 Period=a/5
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2. Foreach of the g cyclic components, a and b coefficients are calculated as follows:

For: X, =u+ Z:(ak cosm,  +hsinw, )
k

;,:l. X, 51=£Z(Xt —X)cosm,t 5=£Z(Xt —X)sineo,t
N t=1 N t=1 N t=1
Where: L is the mean of the time series of X
wis % for k=123, ..., % (N must be even)

t is the counter of time through N observations

3. The periodogram ordinate, or Sk (the sum of squares accounted for by each of the %

periodic components) is calculated:
Sy = % (ak2 + bkz)

e The sum of all periodogram ordinates equals the total Sum of Squares:

e Sometimes expressed as a percentage of the total Sum of Squares

Total Sum of Squares

133

N N N 55 -
1 2 3
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Time VariableX Periodr Frequencyf  PDGValueSk  PercentageSy/XS
1 X - 0 0 0
2 X 10 0.1 3 0.027522936
3 X 5 0.2 76 0.697247706
4 X 3.33 0.3 10 0.091743119
5 X 2.5 0.4 7 0.064220183
6 X 2 0.5 13 0.119266055
7 X - - - -
7 X - - - -
9 X - - - -
10 X - - - -
SUM= SSiotal SUM=100%
4. Graph the results
a) g - b) 80 -
value 70 - value
60 - 60 -
50 -
40 40 -
30 -
20 - 20 ——
10
0 0 — —
001 02 03 04 05 0 01 02 03 04 05
Frequency Frequency

Watch out for leakage
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10K .. ] 'I
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example time series...

S

Peaks at frequencies that explain large amounts of variation (see ‘a
To test for the significance, conduct a Fisher test for each peak to get a CI
If the variability is due to white noise, the line will be flat (see ‘b’)

(a)

)

Compare to the original series to be sure that the result makes sense

[i’]l
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U
L M“.'MM'WM |

o

0 0.25
-"r - IZH

—

0.5 0
Jr - 13'1...-\

(d)

M!Auh

0.5

...and their spectra

Synopsis: A periodogram shows you how much variance in your variable of interest is
accounted foreach of a number functions of varying frequencies.
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c. Power Spectra

e Periodograms are susceptible to sampling errors, so smoothing is used on
periodogram ordinate values

e However, this smoothing might make detecting the role of distinct periodic
components more difficult

e A periodogram with smoothed values is known as a power spectrum

e Typically expressed as ‘power density’ or ‘spectral density’, which is calculated by
dividing each spectral estimate by the overall power

e Power spectra are tested for significance using a confidence intervals and a y2
distribution

value density

—

Periodogram Power Spectrum
Synopsis: A power spectrum is a periodogram with smoothed values.

V. Bivariate/Multivariate Spectral Analyses

e These analyses are used to compare two variables measured concurrently

e Two time series may correlate in their trends, cycles, residuals or any combination of the
three

e One could use a simple Pearson’s correlation, but there are many statistical issues with
this analysis including serial dependence, spurious correlations between time series and
lagged correlations

a. Cross-Spectral Analysis
e Starts by conducting univariate spectral analysis for each time series
e Examines the correlation between time series for each frequency and the lag between

time series

Synopsis: Multivariate spectral analyses allow the comparison of concurrently measured
variables from time series for which univariate spectral analysis has already been conducted.
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VI. Summary

/ _3 ~ f . Variance for% \
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time series > > > spectrum
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Chapter 6: Primer on WAVELET ANALYSIS
Mark D’Aguiar

Wavelet Analysis: decomposing a time series into time-frequency space.

A Wavelet: The term wavelet means a small wave . The smallness refers to the condition that
this (window) function is of finite length (compactly supported). The wave refers to the
condition that this function is oscillatory .

e The mother wavelet is a prototype for generating the other window functions.

¢ a mathematical function used to divide a given function or continuous-time signal

into different scale components.
e The wavelets are scaled and translated copies (known as "daughter wavelets") of a
finite-length or fast-decaying oscillating waveform (known as the "mother wavelet").
e Must have a mean of zero.

Wavelet Transform: is the representation of a function by wavelets.

-Wavelet transforms are classified into discrete wavelet transforms (DWTs) and continuous
wavelet transforms (CWTs).

Examples of wavelets (mother wavelets):

Morlet wavelet: Mexican Hat: Continuous
@(t) = m W exp (—a2mfot) exp (—22/2) . | qpl2) = (27 — Jexp[—2"}9),

1

0er
06
04r

02f

Scale

NOTE: An admissibility condition must be satisfied; satisfied as long as

[ oyt =0 @)



http://en.wikipedia.org/wiki/Continuous_signal�
http://en.wikipedia.org/wiki/Scaling_(geometry)�
http://en.wikipedia.org/wiki/Translation_(geometry)�
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Why Transform? Transformations are applied to time series (signals) to obtain further
information from that signal that is not readily available in the raw signal.

e The parameters of” scale’ and ‘translation’ make it possible to ZOOM IN on the transient
behavior of a signal. l.e. parameters make it possible to analyze the behavior of a signal
at a dense set of time locations and with respect to a large range of scales

Wavelet Analysis:
Recall:
Spectral analysis

e Decomposes a signal into its harmonic component based on the Fourier analysis. Which is
regarded as the partition of the Variance of the series in its different oscillating
components with different frequencies (periods).

e Peaks in the ‘periodogram’ indicated which frequencies are contributing the most to the
variance of the series.

e Spectral and Fourier analysis can determine all spectral components in a signal, but does
not provide any information to when they are present.

Assumption: statistical properties of the time series do NOT vary with time (AKA stationary).

Wavelets:

e Wavelet analysis is similar to Fourier analysis in the sense that it breaks a signal down
into its constituent parts for analysis.

e The wavelet transform breaks the signal into its "wavelets", scaled and shifted versions of
the "mother wavelet".

e [tisthese properties of being irregular in shape and compactly supported that make
wavelets an ideal tool for analyzing signals of a non-stationary nature.

e Their irregular shape lends them to analyzing signals with discontinuity's or sharp
changes, while their compactly supported nature enables temporal localization of a
signals features.

Performs local time-scale decompositions of the signal = estimation of its spectral
characteristics in time.

Advantages of Wavelet Analysis:

1. Wavelet analysis overcomes the problems of non-stationarity in time series by
performing a local time-scale decomposition of the signal, i.e., the estimation of its
spectral characteristics as a function of time. Through this approach one can track how
the different scales related to the periodic components of the signal change over time.
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2. Wavelet analysis permits analysis of the relationships between two signals, and it is especially
appropriate for following gradual change in forcing by exogenous variables.

General Summary of Fourier vs. wavelets

If you are not interested in at what times these frequency components occur, but only
interested in what frequency components exist in a signal, then FT can be a suitable tool to use.

Fourier transform (FT) assumes stationary. i.e frequencies present at all time intervals

e STFT assumes small time intervals of stationary, and is basically the FT multiplied by a
‘Window Function’ ‘w’.

A A

Frequency
Scale

Time Time
STFT DWT

Short term Fourier Transport Discrete Wavelet Transform

Figure: Comparison of STFT with Discrete Wavelet Transform-
e Windowed Fourier transform of fixed time and frequency resolution.

e The wavelet transform offers superior temporal resolution of the high frequency
components and scale (frequency) resolution of the low frequency components.

This is often beneficial as it allows the low frequency components, which usually give a signal its
main characteristics or identity, to be distinguished from one another in terms of their frequency
content, while providing an excellent temporal resolution for the high frequency components
which add to the signal.
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Fourier series
Gives frequency information. Basis functions
last the entire interval.

Wavelets
Wavelet basis functions give frequency info
but are local in time.

YANEPN

N\

VAN
A4 \Y4

VAR

\V4 \4

Figure: Fourier basis functions

Figure : Wavelet basis functions

In Fourier basis, the basis functions are harmonic multiples

AN

N\

/\
IVARVE

V V!

Figure: Fourier basis

In Wavelets, the basis functions are scaled and translated versions of a "mother wavelet" 1 (t). Where ‘j’ is the

coefficient, and ‘k’ is the ‘translation’ (or shift) coefficient.
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Figure: Haar Wavelet 27k t

Continuous wavelet approach

The wavelet transform decomposes signals over dilated and translated functions called “mother
wavelets” ¢(t) that can be expressed as the function of two parameters, one for the time position
(1), and the other for the scale of the wavelets (a). More explicitly, wavelets are defined as

The wavelet transform of a time series x(t) with respect to a chosen mother wavelet is
performed as follow:

+oo +o0
- 1 . t— . .
Wila,7)=—= [ zlt)¢ ( T) dt = / z(t)p (t)dt
v i "
—o —00

where * denotes the complex conjugate form. The wavelet coefficients, W x (a,t), represent the
contribution of the scales (the a values) to the signal at different time positions (the t values).

The wavelet transform can be thought as a cross-correlation of a signal x(t) with a set of
wavelets of various “widths” or “scales” a, at different time positions .
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@ . ® @ Wavelet analysis: (a-c) form
ﬂ ﬂ ; L of Morlet wavelet as a
0 A" T '”?:}"' 0 Faw : ;l\. K 1 H [P
VY \j \(/ ] S v function of parameters ‘a’ for
S 3 t=0: Real and imaginary
: ' parts of wavelet.

° 0 o d) Morlet is superimposed

« { | and moved across the signal
A I A ! ] at different time positions
. 1 ] (t11213) etc.
w W V W W w \P(‘ \ "r ’\m! u { | e) the fit of the morlet is
YA AV : plotted as a two dimensional

0 plot.

© ] t1 = match of wavelet is
high, thus high R(Wx) value.
T 2 = weak match thus low

1] 3
8% Y Y Y 3 R(WXx) value.
as 13 = perfect opposition, thus
= = = high negative R(WXx) value.
Tifne Where R is the Real part of
wavelet.

Discrete Wavelet transform
The continuous wavelet transform was computed by changing the scale of the analysis window,
shifting the window in time, multiplying by the signal, and integrating over all times.

Discrete Wavelets: filters of
different cutoff frequencies are used
to analyze the signal at different
scales. The signal is passed through a
series of high pass filters to analyze
the high frequencies, and it is passed
through a series of low pass filters to
analyze the low frequencies.

W(g-3k)

Subsampling a signal

Corresponds to reducing the
sampling rate, or removing
some of the samples of the
signal.

Eepeat Shifting Cperation

i.e. subsampling by two
refers to dropping every
other sample of the signal.

Subsampling by a factor n 5 Wi/
reduces the number of '
samples in the signal n times.
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e A DWTis non-redundant.

e The number of blocks of wavelet power at each scale is a function of non-overlapping
wavelet width.

e Inatypical DWT, frequencies are spaced at unit powers of two and the count of blocks in
time will increase by unit powers of two as these fixed frequencies increase.

e the DWT is fast and its time-frequency representation of a signal requires only modest
memory, it is not practical for time-frequency spectral analysis

Choice of the mother wavelet:
There are several considerations in making the choice of a wavelet, for example;

1. real versus complex wavelets: Complex returns phase information, a real only power,
but is useful in pinpointing peak frequency.

2. continuous or discrete wavelets: Continuous = redundant decomposition but more
robust to noise. Discrete = fast implementation but number of scales at the time interval
depend on data length.

e Ifinformation about phase interactions b/w 2 series- continuous and complex (Morlet,
Mexican hat).

3. Wide vs. narrow: It's a trade off. A wide wavelet function will give good frequency
resolution at the loss of time resolution, while a narrow wavelet function will yield good
time resolution and poor frequency resolutions.

4. Shape: Reflect the type of feature in the time series. Records with sharp jumps of sets
should use a box-car like Haar, while smooth use Morlet or cosine type function.

Wavelet Power spectrum:

e Allows quantification of the main periodic component of a given time series and its
evolution through time.

Local Wavelet Power spectrum:
Computed by first taking a discrete Fourier transform of the time series

Sx(fT) = [[Wx(f 1) [?

The Fourier spectrum of a signal can be compared with the global wavelet power spectrum.
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Global Wavelet Power Spectrum:

The averaged variance contained in all wavelet coefficients of the same frequency f:

- T Where:
Sx(f)=a2  [|IWx(f1)]|2dr o, is the variance of the time
T o0 series x and T is the duration of the
time series
Mean Variance at each time location:

Obtained by averaging the frequency components:

11
“‘*—"j"‘ﬂf"“ L2, DII12df

Sx(t)= 4 Where Cg = f ll@;ﬂ“ df

Wavelet Coherency and Phase Difference:

e Used to measure the direct correlation between the spectra of two non stationary time
series. i.e . Quantify statistical relationships between 2 non stationary signals.

e In Fourier, the coherency is used to determine the association between x(t) and y(t).

e The wavelet coherence Ryy(f,T), is equal to 1 when there is a perfect linear relation at a
particular time location and frequency between the two signals x(t) and y (t) respectively.

Zero padding and cone of influence:

e An artificial increase in the length of the time series to the next higher power of two by
adding zero-value samples.

e helps to avoid false ‘wrap around’ periodic events.

Disadvantage: as wavelet gets closer to the edge of the time series, part of it will exceed
the edge, and thus artificially decreasing the value of

the wavelet transform. 14
Cone of influence = zone where the ‘edge’ 12
effects are present. < 19
it 3
&
g (5]
Criteria for applying Wavelet analysis 4
1. Minimum time series with at least 30-40 data
points with periodic components smaller than o -
. &4 32 16 =1 4 2 1 0.5
20-25% of the series length. Period (vears)
Fic. 6. Fourier power spectrum from Fig. 5, smoothed with a

five-point munning average (thin solid line). The thick solid line is
the global wavelet spectrnuun for the MNino3 S5T. The lower dashed
line is the mean red-noise spectinumn, while the upper dashed line
is the 25% confidence level for the global wavelet spectrum,
assuming o = 0,72,
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Statistical Significance:

1. Isthe spectra observed at a particular position on the time scale due to random
processes.

2. Determine background spectra - white noise or red noise(i.e. bootstrapping)

To compute the wavelet transform for a time series are thus:

1.

2
3
4.
5

Choose a mother wavelet,

Find the Fourier transform of the mother wavelet,

Find the Fourier transform of the time series,

Choose a minimum scale ay,

For each scale, do:

(o}

(0]

(o}

Using the equation appropriate for your mother wavelet),
Compute the daughter wavelet at that scale;

Normalize the daughter wavelet by dividing by the square-root of the total wavelet
variance (the total of (/)% should then be 1, thus preserving the variance of the
time series);

Multiply by the FT of your time series;

Inverse transform back to real space;

6. Make a contour plot.

7. Define confidence limits based on auto-regressive red or white noise.

References:

Torrence, C. and .P Compo (1998). A practical guide to Wavelet Analysis. Bulletin of the

American Meteorological Society.

Cazelles, B., Chavez, M., Berteaux, D., Menard, F., Olav, Vik,, Jenourier, S., and N. Stenseth. (2008).

Wavelet analysis of ecological time series. Oecologia. 156: 287 -304

Anonymous. A Really Friendly Guide to Wavelets . (2004) http://pagesperso-
orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq2
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PRIMER ON COHERENCE ANALYSIS

Gale Bravener

Let’s start with a data set with two variables (2 different time series)

time VAR1 |VAR2
1 1.000 -.058 2
2 1.637 713 15 A
3 1.148 -.383 1 / \ \.\
4 -058 .006 05 \ \(’
' n
5 -713 |-483 0 "
6 -383  -1.441 | '7z A —¢—VARL
7 006 -1.637 0.5 1\\./ /\/;‘\/ F —=—VAR?
8 -483 |-.707 -1 \.\ / \ /
9 -1.441 |.331 -1.5 < ~¢
10 -1.637 .441 -2 T T T T T T T T T T T T
11 -707 1-058 123 456 7 8 91011121314 1516
12 331 -.006 time
13 441 924
14 -.058 [1.713
15 -.006 [1.365
16 924 266
(Statsoft website)
Some analyses we have are now capable of doing with these time series:
Smoothing Spectral Analysis
Correlation Cross-Correlation
Regression Cross-Spectral Analysis
Auto-Correlation Wavelet Analysis
Spectral Analyses:
fix)
e Spectral analyses (Periodogram / Power ﬂ o
spectrum) decompose a complex time [ L
series into a few underlying periodic (sine ' 2
and cosine) functions, to uncover one or S ~ x
more recurring cycles of different lengths, - _T N 4 ¢ I %”
which at first may have just looked like \- 5 Vo
random noise. \ /
"’_1 W
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e The purpose of spectral analysis is to identify cycles of different lengths, rather than using
the length of the seasonal component which is known a priori and then including it in
some theoretical model of moving averages or autocorrelations (ARMA).

Spectral Analysis (univariate)

(Using our example data from page 1)

Spectral Analysis results:

Cosine | Sine X Y
Frequency | Period | Effects | Effects | density | density
0 0 0 0 0.024
0.0625 16 1.006 | 0.028 | 8.095 7.798
0.125 8 0.033 | 0.079 | 0.059 0.101
0.1875 5.33 0.374 | 0.559 | 3.617 3.845
0.25 4 -0.144 | -0.144 | 0.333 0.278
0.3125 3.2 -0.089 | -0.06 0.092 0.067
0.375 2.67 -0.075 | -0.031 | 0.053 0.036
0.4375 2.29 -0.07 | -0.014 | 0.04 0.026
0.5 2 -0.068 | 0 0.037 0

Cross-Spectral Analysis (multivariate)

Periodogram for each time series (var1 and
var2)

VAR1 (x) and VAR2 (y)

=
w

o
[
/‘

]

9

log (spectral dens.)

=
«

N

° & $ o g° ®
N >

N3 &
o N A\
N o

Q- G -
Frequency o ©

e Used for two or more time series with concurrently measured variables
e Purpose is to uncover potential correlation, and lag, between two time series
e The cross-spectral density function of two sets of random data evolves directly from the

cross-correlation function.

Cross-periodogram of the two time series

Cross spectral analysis results :
Cross- Cross- Cross-
- t X Y
Frequency | Period | Density | Quadrature Amplitude Cross-spectrum (X and ¥)
15
Colf) | Qul( | G (0| )
0 0.000 0.000 0.000 05 \ n
0.0625 16 2.356 -7.588 7.945 & o _
0.125 8 -0.048 0.061 0.077 § -05 <
0.1875 5.33 -2.926 2.312 3.729 T v \-\t\‘
0.25 4 -0.269 0.142 0.305 15
-2
0.3125 3.2 -0.074 0.026 0.079 & P’ & o o o £
0.375 2.66 -0.043 0.009 0.044 N N & of ¥ N o
0.4375 2.285 | -0.033 0.003 0.033 Frequency
0.5 2 0.000 0.000 0.000

These are some of the values from the cross-spectral analysis (from Statsoft website).



J.D. Ackerman

50

BACKGROUND
Cross Spectral Analysis

1. Cross spectral density function is calculated as:

Gy(f) = Co(f) - 1 Qu(f)
Where i (sometimes called j) = \/-1.

Unlike the power spectrum, the cross-spectrum is complex valued (consists of a real and an
imaginary part) as it contains amplitude and phase information.

e The real part of the cross-spectrum, Cy,(f), is known as the cross-density (coincident
spectrum, co-spectrum, or coincident spectral density function). It gives the in-phase
correlation at a given frequency between two series.

e The complex (or imaginary) part of the cross-spectrum is known as the quadrature
spectrum (quad-spectrum, or cross-quadrature spectral density). It gives the correlation at
a given frequency between the two series where the time axis of one has been shifted by a
quarter of a wavelength. As an example, the sine and cosine functions are in perfect
quadrature (Platt and Denman 1975).

2. Cross spectral density function can also be expressed as:
Gu(f) = | Gu() | €709

Where the magnitude (or cross-amplitude), | Gxy(f) | and the phase angle (or phase shift or phase
spectrum), Bxy(f) are related to Cyxy(f) and Qxy(f) by:

| G| =V Coll)? + Qu(1? and Bu(f) = tan [Qu(f) / Co (/)]
Cross-spectrum (X and Y)

Cross-amplitude, | Gy (f) | can be interpreted as a "

measure of covariance between the respective ~ 05 A\ "

frequency components in the two series at f. We can % o

conclude from the results shown in the table 2 v T~
\-\.\.

above that the .0625 and .1875 frequency 15

components in the two series covary. * &£ @ & ‘ny & ?@

© © Frequenc(; ¢

The phase angle (phase shift), Ox,(f) estimates are
measures of the extent to which each frequency component of one series leads the other.
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COHERENCE (aka: coherency, squared coherence, squared coherency, coherence function)

When applying cross-spectral density information to physical problems, it is often desirable to
use a real-valued quantity, given by the coherence.

Yaul(f) = _[Gy(f)] 2

Gux(f) Gyy(f) 0=2vyy()s 1

Where f'is the frequency, Gy is the cross spectrum density of x(t) and y(t), Gx is the power (or
auto) spectrum of x(t) and Gyy is the power (or auto) spectrum of y(t) (Bendat and Piersol 1971).

What does it tell us?

Coherence indicates how well x corresponds to y at each frequency. It is analogous to the
coefficient of determination (R?) in simple correlation (Harris 1967). “The coherence function is

a quantitative measure of the linear correlation between two random variables” (Loewen et al.
2007).

e When y 2y (f) is near 0 at a particular frequency, x(t) and y(t) are said to be incoherent at
that frequency, which simply means they are uncorrelated.

e  When y2y/(f) is near 1 x(t) and y(t) are said to be fully coherent.
o Ify2y(f) is between one and zero, there may be extraneous noise present in the

measurements, the system relating x(t) and y(t) is not linear and/or y(t) is an output due
to an input x(t) as well as other inputs.

Important to note: The coherence is non-negative (between 0 and 1) because it measures the
correlation between aligned frequency components.

For example, if x(t) shows a strong pattern of alternating positive and negative values and y(t)
equals approximately -x(t), then processes x(t) and y(t) will be strongly coherent but out of phase

(Bendat & Piersol 1971).

Phase is measured by the phase spectrum, 8x(f)

Time Delay Application:

It is the slope of the phase spectrum that corresponds to the delay between x(t) and y(t).
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For example, a slope of 3.01 may suggest that series x(t) leads y(t) by 3.01 units (eg. 3 years).
However, because of the inverse tangent (tan-1), the phase angle is between 1 and - and it is
liable to produce discontinuities in the phase spectrum. This could affect our interpretation of
the slope.

Note: lag for example data should be 3 years. Slope of linear trendline for phase angle = 3.01. So
in this case, the phase angle does very well at estimating the time delay.

Dr. Mark Loewen (U of Alberta) suggests that in some cases, a better method to determine time
delays is to plot the cross-correlation function, or cross-correlogram, which is calculated to
incorporate a lag of k, as:

r(k) = g (K)/\ (9xx(0)9»(0))

VAR1 & VAR2

ACF
00

-05

Lag

ADVANCED TOPICS

Wavelet Coherence:
e Along with the wavelet cross-spectrum and phase spectrum, coherence is calculated for
the same applications and using the same equations used as those described above. Used
to quantify the relationships between two non-stationary signals (Cazelles et al. 2008,
Rouyer et al. 2008 - see Feb. 23 readings).
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e Equal to 1.0 when there is a perfect linear relation at a particular time location and
frequency between the two signals.

Partial Coherence Functions:
e For multiple input, single output systems
e Used to reveal the existence of a linear relationship between Ax;(t) and Ay(t) even when
such a relationship is not apparent from the ordinary coherence function between x;(t)

and y(t)
Calculated as: V() = |Su(A] 2
G11(f) Gyy(f) 0=vyi(f)s 1
Example:

If we assume that coherence between x;(t) and
y(t) =1, we may be inclined to believe there is a

linear relationship between these two variable. / *0

But if there is a third variable, xz(t), which is > %

highly coherent with x;(t). In this case, the high &‘fp SN
coherence between x;(t) and y(t) might only be / \

a reflection of the fact that xz(¢t) is highly NG

coherent with x;(t) and xz(t) is related via a Hall memesmmsmmmse sysTem? | 1

linear system to y(t). If the partial coherence is
computed between x;(t) and y(t), it might turn
out to be a very small number near zero.

Multiple Coherence Functions

e (Combines ordinary coherence and partial coherence.

e Used for multiple inputs and one output.
For example, a two-input single-output linear model was used in Loewen et al. (2007) to
investigate the coherence between water level and wind speed (two inputs) and water current
(one output).
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CHAPTER 8: PRIMER ON SPATIAL DISTRIBUTION
Justin Sheehy

A distribution (or set of geographic observations) representing a particular phenomenon or
characteristic across a landscape or location.

There are three spatial distributions that are typically considered:

1. Random
2. Uniform or Regular
3. Aggregated or Clumped

Random Distribution
For a distribution to be considered random, it must satisfy two conditions:

1. Condition of equal probability - any point has an equal probability of occurring at any
position on the plane.

2. Condition of Independence - The . ¢
position of any point on the plane is
independent of the position of any * '
other point LA

- Tend to be modeled/represented with -
a Poisson distribution, equal mean and . . .
variance. . . * .

- If N points are located randomly in a B
region, then the probability that a .
point falls within a particular . .
subdivision of area A can be seen as an ] L
event which occurs with probability . @ . .
AA, where A is the density.

- Not common pattern amongst animal . . .
populations

- Very common amongst wind
dispersed plant populations (i.e. Dandelions)
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Uniform/Regular Distribution

- A geographical distribution in which each member has its own space and all members are
approximately the same distance away

from their nearest neighbour . " . . . N .
- Tend to be modeled/represented with ~ |* * ' * ¢t . ’
a binomial distribution . . ¢ * ¢ .,
- Very common amongst bird * . e Tt et .
populations, especially during breeding | ¢ . * . A . ‘
season . . . . . ¢
- Attack patterns of Wood Beetle on | . v . ¢ * *
Norway Spruce Logs (Byers 1984) . U U . Lt
- lLe. Nesting birds on the beach will be at | | ' . . . . . . .
uniform distances from one another . . . . . .
o0 Distance tends to equal neck . . . . ' ' . . ’
reach of bird . . ¢ * . ¢ . . R
. . ¢ . ¢ . . . . .
- In Areas of High Predation, can be the ¢
safest pattern strategy for nesting e . ¢ ¢ ¢ . .
0 Upland thicket hens (Picman
1988)
Aggregated or Clumped Distribution
A geographical distribution where individuals RV, e
occur in clusters NAK] e :,::_.:.
- Too dense to be explained by chance e :::f”-:f-
- Correlated to environmental RO
heterogeneity/ availability of resources 2 .

imals i ’* oy
Most common pattern amongst animals in c.f“. . ';k

L]
stochastic environments f-}:‘.;'. ':. ~ ‘:
Tends to have a negative binomial {::": . feeeet
distribution .

[.e. Wolves travelling in packs . .o,

Defense Mechanism against predators R . .,
Tend to be modeled/represented with a .g: ;'.:g: ..':: :;':',
Negative Binomial Distribution St od 30 o8
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Quadrat Analysis

- Aplanar study region is divided into a grid
with cells of equal size (quadrats) . . * .

- Number of points in each cell, or in randomly T y d -
selected cells, is recorded ‘e P .

- Quadrats are typically square in shape . . . A

- Tries to determine if the distribution of an : ! - . .
area is random or nonrandom . SR S

- Null hypothesis, Hy, is typically random - . »
distribution . e | o

Therefore, if observed frequency distribution e . *
does not conform to one expected from a L . . .
random point process:
- Reject null hypothesis (randomness)
- Accept alternative hypothesis
0 Either regular or clustered, depending on direction the observed values differ from
those expected

Variance-Mean Ratio (VMR)
- In Poisson Distribution, variance = mean, variance/mean = 1
- Observed point distributions may be measured for their difference from the expected
Poisson realizations by testing the significance of the difference between the observed
ratio and 1.

/ 2
- The difference has a standard error of VN —1 where N is number of observations and N-
1df
(t9) = Observed — Expected
- The test statistic SE , Expected value is 1
- VMR >1 =more clustered than random

- VMR < 1 = more regular than random

For Example, if you had an area with (N=50) animals, and measure the mean number of animals
per quadrat (u) and variance between quadrats for the area, you can determine the approximate
distribution of the population.

Uniform/Regular Random Clustered
Mean () = 0.500 u=0.500 u=0.500
Variance (8%) = 0.241 52=0.497 (6%) =27.00
VMR = 0.482 VMR = 0.994 VMR = 54
pro 048271 5 5ag pr= 099971 4030 =21 59,65

0.2041 0.2041 0.2041
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Following calculations, use a one-sided T-test with N-1 df to determine if significant

Chi Square (Or Goodness of Fit) Test

- Another method for measuring the difference between observed and expected (typically

random) distributions.

- Similar to VMR, but uses only expected and observed values

Steps for Chi square test

1. Estimate population mean of the Poisson distribution is: M= 4a, where A is the
population density, and a is the quadrat area, with a sample mean: M= U

NP(r) = N exp(-)
" (r=0,1,2,3...), where risthe

2. Calculate the expected frequencies:
number of points per quadrat.

N

_ 2
X2 _ Z[Observed Expected]

3. Test for difference using: i=0

o [f, =NP(NT
X'=2, NP(r)

r=0

Expected

4. Check chi square table for significance, using N-1 df. If significant, reject null hypothesis.

Number of Observed Frequencies Expected frequency with

points per quadrat  Uniform/ Random Clustered Poisson model (Aa = 0.500)
Regular

0 25 30 44 30.32

1 25 16 2 15.16

2 0 3 0 3.79

3+ 0 1 4 0.730

N= 50 50 50 50.00

X249 7.3203 0.3145 36.039

Po.os 0.0003 0.76 0.000002
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Nearest Neighbour Analysis

- Measures the difference between an observed spatial point pattern and randomness

- Uses the distribution, in a random point pattern, of the distance between a point and its
closest neighbouring point

Steps for Nearest Neighbour
1. Measure the distances between points and nearest neighbours

1y

d==>_d,
2. Calculate mean distance, using: N

E(d)=3m
3. Calculate the mean of the normal distribution, using: 24
var(d) = 4-x
4. Calculate variance of distribution, using: 4 47N
_d-E(d)

5. Calculate test statistic (¢), using: Vvar(d)

* a
D =
Note: There is another index suggested: E(d)

In this index, a perfectly uniform pattern leads to a D* value of 2.14191, a random pattern leads
to a D" value of 1, and a clustered patter leads to a D* value of 0

In the following table,

1

E(d)=m=7.071

4-r

=0.273
4(50/10000) (50)

var(d) =
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d D’ /
15.00-7.071 1517
Perfectly regular 15.00 2.12 05227
(uniform)
7.59 1.07 759_7'071:0.993
Random T 05227
0-7.071
Perfectly 0.00 0.00 057 198
clustered
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CHAPTER 9: PRIMER ON USE OF INDICES TO
DETERMINE SPATIAL PATTERNS
Michael Janssen
Introduction

Spatial indices are used to provide an indication of spatial pattern.
Note: An “index” does not represent a real quantity, and is therefore different from a “measure”

Spatial indices can be used to:
1. Describe a spatial pattern at a given location
2. Indicate relationships within spatial data e.g. autocorrelation
3. Indicate spatial association between individuals or groups

Review - Basic spatial patterns:

° ° ° ° J Uniform

° ° ° ° Synonyms: regular, even, negative contagion, under-dispersed
o L L L q
Aggregated
® PY .... Synonyms: clumped, patchy, contagious, positive contagion, over-
o9 .. dispersed
L
: o0 ® Random
..
@
L L
[ )

1. Statistics describing spatial patterns at a given time and place- Indices of Dispersion

¢ Indices of dispersion are used to measure the distribution of organisms across a landscape.
e The type if index used depends on how the spatial data were collected

Spatial patterns can be inferred from data that:
e was collected using sampling quadrats
e includes the entire population accurately plotted on a map
¢ includes only a sample of individuals plotted over 2 dimensional space
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Indices of dispersion for quadrat counts

Quadrat count data: A series of counts of individual organisms in quadrats of constant size and
shape are taken. Quadrats can be randomly sampled from the area of interest, sampled side by
side (“contiguous quadrats”), or placed so the entire area is sampled.

Consider the quadrats: A good index of dispersion:
. - moves in a smooth manner from uniform-random-
2 |6 |6 | xX=4 aggregated
2 16 |6 n=9 - Is not affected by n or mean frequencies
s2=4 - has a known sampling distribution so CI’s can applied and
2 |4 |4 | X(x)=38 significance tested.

Variance-to-mean ratio (VMR):
VMR =s2/Xx" For details, and hypothesis testing, see Justin’s primer

Green'’s coefficient (Cx):

S 1
-_X
r(x) -1

*Unfortunately the sampling distribution has not been worked out, so it is difficult to assign
confidence intervals

Morisita’s Index of dispersion (Ig):

l, = n[zgng — Zx}
(Zx)2—2x

Ho = Random distribution  y2=14 (}}x-1) +n-}x df.=n-1

Standardized Morisita Index (I, ):
- standardized so it fits on a scale of -1 to +1

- 1st calculate 14
- Then calculate 2 critical values from the Morisita Index

2
M, = L oos — N + X
(Zx) -1

where x2.975 = Chi Square from table with d.f. = n - 1 that has 97.5% of area to the right

Uniform Index =

2
M, = L oos — N + 32X
Zx) - 1

where x2.025 = Chi Square from table with d.f. = n - 1 that has 2.5% of area to the right

Clumped Index
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Standardized Morisita Index (I ) cont...
Then calculate the standardized Morisita Index using one of the following:

When I3 > M. > 1.0, l, = 0.5 + 0.5 (Id_Mcj

When M, > I; > 1.0, l, =

0.5 (

n— M,

Id—lj
M, -1

The standardized Morisita Index (I, )
ranges from -1.0 to +1.0 with 95%

confidence intervals at +0.5 and -0.5

When 1.0 > [ > My, l, =

When 1.0 > My > I, ly

The Scale Problem:
A * . . ee e | Quadrat size can influence the indices of
e, ° eee o dispersion
° ® %, %
B ¢ ® | Inthis hypothetical clumped population with
o o o regularly distributed clumps:
L 3

e e o ©®oa® | quadrat A will suggest arandom distribution,
ot e | quadrat B will suggest a clumped distribution,

C ° quadrat C will suggest a uniform distribution.

Adapted from Krebs 1999

Spatial Pattern from Distance Methods: N
Data is often collected such that we have 2 kinds of measurements:
A A

e Distance from random points to the nearest organism (x;) X . A
e Distance from a random organism to it’s nearest neighbor (ri) e

5 (x2 .

h = =X /\ organism
2
()

h = HopKin'’s test for randomness = random point

under H, of randomness h is F distributed with d.f. = 2n in numerator and denominator
An index of of this pattern is Iy = h / (1+h)

Iy is near 1 when there is clumping, near 0 when uniform, and near 0.5 when the data are
random
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Spatial Pattern from Distance Methods cont...

T-square sampling procedure:

1. Random point O is located

2. Distance x is measured from O to nearest organism P

3. Asecond distance z is measured to it's nearest neighbor, constrained to be in the hemisphere
to the right of the dashed line, Q. i.e. the angle must be greater than 90°.

7/

h, = 2022 (6) + 2(z)]
(2 2x) + 2]’

Hine's statistic =

e H,is arandom distribution such that hr=1.27

e H, is evaluated by comparing the calculated hr to critical values from a table for this
statistic.

e hrsmaller than 1.27 indicates a uniform pattern, larger than 1.27 indicates a clumped
pattern.

Spatial Pattern from mapped data

If we have the entire population of interest mapped, we can use the Clark and Evans test:

_2r,

ighb
- neighbor

Ta = mean distance to the nearest
where 1i = distance to nearest neighbor for individual i
n = number of individuals in study area

p = density of organisms = number in area / size of area

Under Ho of a random spatial pattern:

1
re = expected distance to nearest neighbor = —
2p
. . s = 0.2616
Z = A E ro-
s, Jnp

T, :

Index of Aggregation = R=-2 If pattern is random, R =1
re If uniform, R approaches 2.15

If clumped, R approaches 0
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2. Indices of spatial autocorrelation:
n
Recall: Z(Xi -y —
i=1

The correlation coefficient: r =

zn:(xi—i)zzn:(yi—
i=1 i=1

n—k
D N
And the temporal autocorrelation coefficient: , = - n
(with alag of k) z(yt _y)?
t=1

With some spatial datasets we might logically expect that observations that are close together
may be more similar than observations that are far apart. As an
index of spatial autocorrelation ZZW“(X —X)(x,—X) Wecanuse Moran’s I:

\d=1j=1
| = 1
G

2
i=1

Where x; is the value of the observation at point i, n is the total number of observations, wi; is the
weight between observation i and j, and S, is the sum of all wjj’s :

i=1j=1

Wi is chosen by the researcher according to the expected nature of the correlation:
e Ifyou predict that values in adjacent quadrats are correlated you can set
wij =1 when i and j share a boundary, and wj; = 0 if they don’t

e Ifyou predict that the strength of the correlation depends on the distance between i and j,
you can set wj; = 1/dj;, where djj is some measure of distance between i and j

Testing for spatial autocorrelation

Under the Null Hypothesis of no correlation, I, =-1/(n-1).
Since we can calculate variance of I, we can test whether observed I (denoted 1)is significantly
different from Io: A

| —1g

(var (1))

If z>1.96, we reject Ho in favor of positive autocorrelation
If z <1.96, we reject Ho in favor of negative spatial autocorrelation
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3. Indices of Spatial Association:
If two types of organisms often occur together in the same place, they are spatially associated

Organisms that don’t move: e.g. Plants

If we have presence/absence data for quadrats, for 2 species, we can create a 2x2 contingency
table:

Species A a = # quadrats where both species are present, etc...
present __ absent H, is no association between species A and B, so
a=b=c=d
@ present a b we use H, to calculate expected values of a,b,c,d
()
©
(% absent . g test whether the expected values are significantly different
from observed using Chi-Square with d.f. = (R-1) (C-1)
Total n If p< 0.05 and ad>cb the data suggest positive association

If p< 0.05 and ad<cb the data suggest negative association
Organisms that move:
When an organism is capable of moving it’s distribution can change rapidly and so we are
necessarily concerned with how organisms are distributed in both space and time.

The Half-Weight Index (HWI) is commonly used as an index of association:

a and b can represent two different individuals, groups, or species
X = number of instances a and b were observed together

HWI = x/[X + yab + 0.5(ya + Yab = number of instances a and b were observed apart, at the

Vb)] same time (often y,, = 0)

Ya = number of instances a was observed and b was not

Vb = number of instances b was observed and a was not

To test Ho of random association:

1st randomly generate many alternative data sets with an equal number of individuals and
observations as the original data set

2nd calculate HWI for each pair of individuals from the observed data set

3rd calculate HWI for each pair of individuals from each of the randomly generated data sets

D D 5 D = total number of individuals observed
O, — E; O;i = HWI for individuals i and j
4t calculate S S=EEM i duglsiandj
catcuiae D? Eij = mean HWI for individuals i and j from

i=1j=1 the randomly generated data sets

5th Compare S from the observed data set to the distribution of S values from the random data
sets. If S from the observed data set is larger than 95% of the S values from the random data
sets, we reject Ho
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CHAPTER 10: PRIMER ON PATIAL SMOOTHING
Gale Bravener

“Smoothing is a statistical technique...to capture important patterns in a set of data, while leaving
out noise or other fine-scale structures...” (Sheehy 2009)

Like smoothing of time series data:
O spatial smoothing is used to remove distracting noise present in spatial data in
order to reveal patterns that are not evident visually.
0 spatial smoothing calculates a value at a specific location as a function (e.g.
average) of its neighbours

Raw Data Contour
Unconte ured — Subsea top of oil formation Contoured on top of oil fo rmation
-
—43095 —4400
—4400 - —4280
. —4200 - 4380
—4270 —4190 ~
—4100
O - . —4200 - -
—4150 - -
—4160 =L = —4085
®_4100 —4310
& .
—4180% —4190
»
—4380 —4350 -
™ —4415

Contowr interval 100 ft

I. WHEN TO USE SMOOTHING?

Detecting patterns in spatial data, especially point data

Provides insight but not precise estimates of location, spread or trends.
Useful where data are known to be of low precision or small sample sizes
To convert discrete point data to a contour map or continuous density map

II. WHAT MAKES A GOOD SMOOTHER?

Some objectives of smoothing:

1)
2)
3)

4)

reduce the variance so that underlying trends can be seen
reduce attention to outliers or transients
examine patterns in residuals that can be revealed once the smoothed trend has been
removed
minimize the effect of aggregation in what may be a summary data point across an entire
region

(Kafadar 1999)
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Some characteristics of a good smoother:

1) displays the true pattern as accurately as possible
2) performance should not be impaired if the data are not evenly spaced
3) its output should be ‘smooth’ where F (the true function of x;) is, without attempting to
smooth over obvious breaks
4) unusual values, unsupported by neighbours, should stand out clearly in the residuals, not
in the smooth
(Kafadar 1999)

III. TYPES OF SMOOTHERS
Recall temporal smoothers: Moving Averages, Weighted Average, Kernel, Spline, etc.
Spatial smoothers:

e Linear: Trend Surface Analysis, Moving Averages, Kernel, Spline, IDW

¢ Non-Linear: Median filters, Head-banging

» Linear smoothers expose extremely broad, non-specific trends, and non-linear smoothers
identify sharp distinctions between regions

Choropleth maps

e simple smoother - converts point data to choropleth to isopleths (= contour map)
e degree of smoothing depends on the number of classes the values are put into
e smooths by assigning data values to categories (interval to ordinal data).

raw quadrats densities choropleth contours
1. Trend surface analysis

e entire surface is approximated by a polynomial equation

e surface is estimated by an ordinary least squares regression.

e peculiar in that the two independent variables represent two perpendicular spatial
dimensions, and the dependent variable represents a variable (e.g., elevation)
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o Trend surface analysis (cont’d)

e alinear equation (first order polynomial) describes a tilted plane surface:

Zz=a+bx+cy

e quadratic equation (second order polynomial) describes a simple hill or valley
Z =a+ bx + cy + dx? + exy + fy?

e cubic equation adds more complexity

Z=a+bx +cy +dx? + exy + fy? + gx3 + hx?y + ixy? + jy3

e By analogy, it’s like taking a piece of paper and fitting it to a landscape (e.g. a slope). A flat
plane (no bend in the piece of paper) is a first-order polynomial (linear).

o Buta flat piece of paper will not accurately capture a landscape containing a valley unless
you bend it. Allowing for one bend is like a second-order polynomial (quadratic), two
bends a third-order (cubic), and so forth

LOESS (locally weighted regression) is a type of trend surface analysis:
o for fitting a regression surface to data through multivariate smoothing.
e The dependent variable is smoothed as a function of the independent variables in a
moving fashion analagous to moving averages in time series (Cleveland 1988)
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Female Melanoma: Loess, f=.33 it

Female 1aw rates (a)

(Kafadar 1999)

2. Moving Average Smoothers (aka Moving Windows)

e uses circular or square filtering window
e uses the average value of data points within the window to calculate the value
e averaged values have less variability and are thus spatially smoothed.

example:

|
o
-
&
-'5
-
"
.;
_:—'—'-'-'-F'

Bl 5T ey

3
[ ]

=3

-

@

2

-

e circle around quadrat 53 defines the window, average of the 33 quadrats within window
gives the smoothed value for 53

e The choice of window size is very important (large windows reveal better regional
patterns than local patterns)

A more common approach is to use weighted moving averages for smoothing. This allows
points nearby to have more influence than points far away. Common weighted methods include:

3. Kernel estimation

e similar to moving averages in that it uses a moving window, but the kernel method
weighs nearby objects more than far ones.
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Kernel estimation (cont’d)

e Fora 2-D surface, a common kernel is:
- X 1} +y=v) .,
'[\’] = I1 - —I

e Where h is bandwidth, n is the number of points within the bandwidth, (x-xi) 2 + (y-
yi)2 measures the deviation in x-y coordinates between points (x; y;) and (x, y).

e AXkernel function looks like a bump centered at each point x;, and tapering off to 0 over a
window or “bandwidth”

Kernel function

/-:< K()

Bandwidth

[/
/////,r‘wmd

4. Inverse Distance Weighted (IDW)

e another moving window method

e estimates unknown values as the weighted average of its surrounding points, in which the
weight is the inverse of the distance raised to a power

e itis an exact smoother, so the exact known data values are honoured

where 7, is the unknown value to be estimated at u, z, 15 the attribute value at control
point i, d, is the distance between points § and w. 5 is the number of control points
used in estimation, and k is the power. The higher the power, the stronger (faster)
the effect of distance decay is (i.e., nearby points are weighted much higher than
remote ones). In other words, distance raised to a higher power implies stronger
localized effects.

Problems with IDW:
e when points are clustered, or more dense in some areas than others, steps appear

e spikes or pits occur around data points because they are “honoured”
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5. Splining

e polynomial regression is “global”, while moving averages, kernel, IDW are “local” -
splining offer a compromise by using a “piecewise polynomial”

e creates a surface that predicts the values exactly at all control points and has the least
change in slope at all points

e cubic splines are commonly used

ix,y)= Er‘l d’ Ind, +a+bx+cy
=y

where v and v are the coordinates of the point to be interpolated,

d, =yf{x= v,V +(v=v.) is the distance from the control point (x,. v,), and A, a.

b, and ¢ are the 7 + 3 parameters (o be estimated. These parameters are estimated
by solving a system of # + I linear equations (see Chapter 11), such as

Z Ad' Ind +a+ bx, + ¢y, = 5,;

]

ZAI =) : z.-l_ v, =00 and E.—'I.__rl =)
=i

Mote that the first equation above represents n equations for ¢ = 1, 2, ..., n, and 7,
i= the known attribute value at point i
Problems:
e Splines tend to generate steep gradients in areas where data is sparse.
e poor for surfaces which show marked fluctuations - can cause wild oscillations
e are popular in general surface interpolation packages but are not common in GISs

6. Kriging

e acommon method for interpolation.
e models spatial variation as three components
O aspatially correlated component (representing the regionalized variable)
O adrift or structure (representing the trend)
0 arandom error
e The heart of kriging is the semivariogram
e This is the a priori information that you must supply in order to interpolate
e Theideais to get an estimate of the distance one would need to travel before data points
become uncorrelated.
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First, remember the definition of variance:
Y
, 2lxx)
55—
N-1

The variance of a data set is a number, but the semivariance is a curve derived from the data
according to:

is known as the experimental variogram, computed
2N from the data.

y . ( h) B Z (y(x) _y(x + h))z where h is the lag distance between data points. This

A model is chosen by matching the shape of the curve of the experimental variogram to
the shape of the curve of the mathematical function.

1. Calculate
variogram using all
points that fall in the

lag and angle

tolerance

e Ifdatais isotropic, an omni-directional semivariogram is used (angle is ignored)
e Ifdata is anisotropic, the directional semivariogram is indicated (eg. vertical or
horizontal)

2. Repeat for all points and all
lags, and plot
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o There are several models of semivariance top pick from (linear, exponential,
spherical, etc.).......The trick is to pick the one that best fits your data!

Linear Madel Exponeniizl hndel Spherical Model

e The model is then used to determine weights applied to neighbouring points.

For example, the exponential model:
2
Y(h)=c,+cll-e *

e Nugget (c,): variation or
measurement error - seen as y- Sill
intercept e " "

e Range (a): controls the degree of .
correlation between data points, .
usually represented as a distance .

L1

e Sill (¢): The value of the Nugget Effect
semivariance model as the lag (h)
goes to infinity - it is equal to the
total variance of the data set.

Y
x|

The linear model is the simplest and one of the most common

In the linear model:
e the semivariance increases as the lag increases
e no indication of a sill or range
e concerned with the slope and intercept

y(h)=c,+bh

and the slope (b) is nothing more than the ratio of the sill (c) to the range (a).
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“... linear smoothers tend to be somewhat unsatisfying in situations with abrupt features,
extreme values, or outliers. Because non-linear smoothers use medians, abrupt features
will be retained far better than with linear smoothers” (Kafadar 1999).

7. Head-banging

el

median-based smoother intended for use on
non-gridded spatial data

designed to remove small-scale local variations
within a data-set while preserving regional
trends

tends to not over-smooth zones of sharp
transition, which can be good or bad

The procedure is as follows:

. For each point or area whose value, v, is to be smoothed, determine the NN nearest
neighbours to x,.

From among these NN neighbours, define a set of pairs around the point/area, such that the
‘triple” (pair plus target point at x;) are roughly collinear. (Formally, the angle formed by the
two segments with x; in the centre should not exceed. say 4+ 45 from 180 . Denote this
threshold ¢, for example, ¢ = 45 .) Let NTRIP be the maximum number of such triples. If
there are more than NTRIP pairs that satisfy the ¢ criterion, choose those whose angles are
closest to 180 .

Let (a,, by) denote the (higher, lower) of the two y-values in the kth pair, and let 4 = median
‘ay|. B = median |b].

The smoothed value is y; = median {4, y, B} = median|medianja,!. v, median}h,{}.

(Kafadar 1999)

Problems:

Smooths out spikes, which may not be good, depending on the data.
Tends to produce high rates on the boundaries of study areas.

IV. HOW TO USE SMOOTHERS?

Different smoothers are better for different purposes and different data

The best strategy is to use several smoothers and compare the results

Use an iterative approach (smooth, plot, adjust; re-smooth, re-plot, readjust)

As with time series data, the residuals (noise) can be evaluated, or removed (detrended)
to identify patterns in the data.
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Bouguer gravity, northwest Kansas Bouguer gravity, first-order trend, northwest Kansas Bouguer gravity, first-order residual, northwest Kansas
Azimuth-35°(0" Is South), elevation 35° Azimuth-35" (0" &g Scuth), elevation35® Azimuth -35° (0" is South), elevation 35°

Y
et
ﬁ%ﬁ‘\‘\l;{\\:lll\\‘:\l““li‘.‘i“t““\l

Removing the first order trend (a tilted plane) reveals clearer patterns in the residuals

V.INTRODUCTION TO SPATIAL INTERPOLATION

e The goal of interpolation is to derive a value at some intermediate location other than
where data are taken

e Many methods used for exploration (smoothing) are also used for interpolating
0 Inverse Distance Weighting (IDW), Splining, Kriging

e As with smoothing, different interpolators are better for certain types of data - (See
ArcGIS Spatial Analyst information at end of primer for details).

An example from my own data:

The goal: Use measured depth data to interpolate bathymetry, and estimate water depth at
many (~75,000) x-y locations where fish were positioned.

1. Mapped x-y depth points in the 100m x 400m study area using ArcGIS
2. Interpolated depths across entire area
a. TIN (triangular irregular network) attempted first
b. Splining, Kriging, IDW all attempted
3. Realized transects and clumped data having too much effect
4. Took random sample of 5000 points, and re-evaluated interpolation methods
5. Decided on IDW as best method - fewest spikes in data, least influence of transects on

data
6. used “extract values to points” tool in ESRI Spatial Analyst to obtain depths

See next page for graphics...
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All depth TIN interpolation
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If there is systematic spatial variation in the variate, then the phenomenon being studied is said
to exhibit spatial auto correlation.

Fig. 1 Spatial Autocorrelation - correlation of a variable with itself through space.

A. Completely separated

pattern (+ve)

B. Evenly spaced pattern

(-ve)

L

Why spatial autocorrelation is important

Recall: assumption that observations are independent

* Positive spatial autocorrelation may violate this.

If there is any systematic
pattern in the spatial
distribution of a variable, it is
said to be spatially
autocorrelated

If nearby or neighboring areas
are more alike, this is positive
spatial autocorrelation

Negative autocorrelation
describes patterns in which
neighboring areas are unlike

Random patterns exhibit no
spatial autocorrelation

e Measures the extent to which the occurrence of an event in an area, makes the
occurrence on an event in a neighboring area / unit more probable

* Goals of spatial autocorrelation:

* Measure the strength of spatial autocorrelation in a map

* testthe assumption of independence or randomness
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SPATIAL AUTOCORRELATION
* Non-spatial independence suggests many statistical tools and inferences are
inappropriate.

* Correlation coefficients or ordinary least squares regressions (OLS) to predict a
consequence assumes that the observations have been selected randomly.

» Ifthe observations, however, are spatially clustered in some way, the estimates
obtained from the correlation coefficient or OLS estimator will be biased and
overly precise.

* biased : areas with higher concentration of events will have a greater impact on
the model estimate and they will overestimate precision .

General Considerations:

* most based on a sample of localities from an area, or points on a plane.

* Points can be regularly distributed (i.e. grid) or lattice like typical ecological sampling.

* Variables can be nominal (categorical e.g. colour morphs, BW, genotypes), Ordinaal
(ranked e.g. n localities ranked in order of population density for a species occurring
there), or interval (continuous e.g. gene frequencies, morphological measurements etc.)

* The single value of a variable at each point may be based of single observation (e.g.
species i.d. of an individual found at a point in an area), or based on a sample of
individuals taken from a locality

* Not all pairs of points will be correlated. Investigator chooses the criteria for nearest
neighbor connections.

Simple adjacency / join structure / connectedness.

Rook connections, Bishop connections, Queen Connections
»

[T

More complex or irregularly distributed points:
* Gabriel-Connection graph- Any two localities A and B are considered connected if
no other locality lies on or within the circle who's diameter is in the line AB.

C
®
. The presence of
Points a and b are . p cir e
. point c within the
Gabriel .
. . a b | circle prevents
neighbours, as cis )
a b . . points a and b from
outside their . .
. i being Gabriel
diameter circle .
neighbors.
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Indices of Spatial Autocorrelation
Join Count Analysis (Nominal Data)

Join = edge connecting two point or localities

points that are like or unlike with respect to the nominal variable (i.e. categorical variable
such as spatial distribution of colour morphs.)

Used to determine whether the classes of points in a regular grid or other spatial
structure are random or patchy in their distribution

Comparing the observed number of time that members of the same class are found at
adjacent grid points with the number expected if the classes are randomly arranged.
Free sampling vs. non free sampling (equations in APPENDIX A)

Example: refer to figure 1 A - D.

Join count computation

A. Positive autocorrelation

£ ; £ ¢ # £ Ly BW Jains [BE Joins |[Ww Joins

# of Joins 6 27 27

; . i ’ : : - z-Rand. statistic -6.58 5 60 5.60

Variance Rand, 14.26/ 459 459

Expected # of Joins 30.86 14.57) 14.57

5 - . . : ) % Number of Cbsenations [#0fBS  |# ol W's | Tota Joins
% i | 1w | éo

B. Negative autocorrelation

BYW Joins |[BE Joins ['WwW Joins
3 1 1 i i 3 ) # of Joins B0 0 0
I-Rand. statistic 702 -5.80 =6 80
(Variance Rand, 14 26 4.59 4.59
2 1 1 3 3 2 16 Expected # of Joins 30 66 1457 14.57
Number of Obsenations |[#of B's  |#of'W's [ Total Joins

1® n n ) n i 20 36 [ 18 [ 18 g0

1. Selec_t connection (.1._e rook, queen) autocorrelation
2. Specify Ho (probability that a cell is a BV Joins |BE Jors [Ww Jams
particular colour, independent of all | [#& Jains 35) 13 12
colors Z-Rand. statistic 1.10] 073 -1.20
. ] (variance Rand. 14.26 4.59 4.59
3. Apply equations to determine Expected # of Joins 30.86] 1457 14.57
observed joins [(BB'BW'WW) Number of Obsenations |#0fB'S  [#of W's |Tota Jons
APPENDIX A] ] 6 ] 10 50
4. Apply equations to determine ) .
. D. Atriplex hymeneltrya — positive BB
Expected Values #1 , and expected ;
_ autocorrelation
variance . EW Joins_|BB Joins |WW Joins
5. Make decision # of Joins 173 39 268
z-Rand. statistic -1.14 2.00 0.24
% . . . Wariance Rand. T0E7 17.69 2297
more complex joins with weights use Expected # of Joins L5705 26684
matrix and equations (See Cliff and Ord Nurmber ﬁf%zsﬂw'-ﬂﬂa #of gg #'371‘;-1"'5 Tm;éﬁﬁ'ls

1973)

C. Random model — no discernable
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Moran’s | (Interval Ordinal)

* One of the oldest indicators of spatial autocorrelation (Moran, 1950). Still a defacto
standard for determining spatial autocorrelation

* Applied to zones or points with continuous variables associated with them.

* achieved by division of the spatial covariation by the total variation.

. . N is the number of cases
I ND D W (X = X)(X; = X) X; is the variable value at a particular location
= 3 _X)\2 Xj is the variable value at another location
(Zizl'w"’)z‘(x' X) X is the mean of the variable
W;; is a weight applied to the comparison between
location i and location j
*denotes the effect of i on j by the weight of w;;

Wj; is chosen by the researcher according to the expected nature of the correlation:
e Ifyou predict that values in adjacent quadrats are correlated you can set

wij =1 when i and j share a boundary, and wjj = 0 if they don’t

-i.e. If zone j is adjacent to zone i, the interaction receives a weight of 1

e Another option is to make Wj; a distance-based weight which is the inverse distance
between locations I and j (1/dj), thus wij = 1 / dij; where dj; is some measure of distance
betweeniand j

* Compares the sum of the cross-products of values at different locations, two at a time
weighted by the inverse of the distance between the locations

e Similar to correlation coefficient, it varies between -1.0 and + 1.0

When autocorrelation is high, the
coefficient is high

A high I value indicates positive
autocorrelation

Testing for spatial autocorrelation / significance

* Empirical distribution can be compared to the theoretical distribution by dividing by an
estimate of the theoretical standard deviation

N2 20wy +30 0 wy)* =N, (ijij)z]
(N2 _1)(Zijwij ’

z(|):|_—E(I) Seqy = SQRT[

E() where:
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Under the Null Hypothesis of no correlation, E(I) =-1/(n-1).

Since we can calculate variance of I, we can test whether observed I (denoted I )is significantly
different from E(I):

If z> 1.96, we reject Ho in favor of positive autocorrelation
If z < 1.96, we reject Ho in favor of negative spatial
autocorrelation

Geary'’s C (Interval/ Ordinal)

TN DY 3 W, (X, - X;)’]
Z(Zizjwij(xi - )?)2
Similar to Moran’s I (Geary, 1954)

Interaction is not the cross-product of the deviations from the mean, but the deviations
in intensities of each observation location with one another

Value typically range between 0 and 2

If value of any one zone are spatially unrelated to any other zone, the expected value of C
will be 1

Values less than 1 (between 1 and 2) indicate negative spatial autocorrelation
Inversely related to Moran’s |

Does not provide identical inference because it emphasizes the differences in values
between pairs of observations, rather than the covariation between the pairs.

Moran’s I gives a more global indicator, whereas the Geary coefficient is more sensitive
to differences in small neighborhoods.

Testing the Significance

C-E(C)

Z(C)=
SE(C)

SUMARRY
HOW TO COMPUTE SPATIAL AUTO CORRELATION (MORANS I and GEARY’s C)

1.

Specification of Ho: probablility that a quadrat received a particular x;, is the same for
each quadrat, and the level of X; observed is fixed independently

Significance level: Examine H, at 0.05
Sampling distribution assume normality of [ and C

Determine region of rejection, indicated by H4
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The measurement scale dictates the type of measure,
assign weights to the cases

create a matrix representing the relationships between variables into software which will
compute measure of the spatial autocorrelation between the input data matrix
(APPENDIX A).

When building a contiguity matrix be cognizant of the relationships between cases,
are neighbors determined on a eight directional Queens case or non-diagonal, four
directional Rooks case.

OTHER TESTS (point wise distance data) +s] North America
* C(Creating a correllogram using the — e
. . . “l.ﬁ 0.4
coefficients vs. distance. = 1 .
E u_ E .". . LI .
R [ e '
=
0.E
Mantel Test (Mantel z) 0.8
e Moran's | is a parametric test while o o mm o v

Mantel's test is semi-parametric
Both test against the null that there is no spatial autocorrelation.
Moran's [ does this with a correlation that is weighted by inverse distances;
Mantel test examines the correlation between two distance matrices and generating a
null distribution for this correlation by randomly permuting one of the matrices:

0 distance matrix’: consists of the distance between all pairs of sites

0 Correlation matrix: consists of the similarilty between the values across all pairs

of sites

Visualize using correlation coefficients.
Mantel process tests patterns using a randomization test in which one of the matricies is
shuffled, and the resulting resulting coefficient compared with the observed (unshuffled)
regression. The end product = Mantel z value which indicates whether or not
autocorrelation changes with distance. (Koenig 1998)
Plot mantel correlogram -this tests for autocorrelation relative to the overall data set.

0.2 ——
-1 \\
- (o}
=
=
= —0O.1
—0 2
—0. 3 u T y 1
[¢] 20 40 &0 80

Distance (km)

Fig. 1. Mantel correlogram for Bray-Curtis dissimilarities and
geographic distances using ¥ km distances classes. The solid circles
are significantly different from zero at the 95% confidence lewvel,
using an error rate of o/ n where n is the number of distance classes
tested { = 10},
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The analysis of regression residuals

On many occasions regression analysis is carried out to look for autocorrelation in the
residuals from a regression. Detection of autocorrelation among residuals can imply:

1) The presence of nonlinear relationship b/w dependant and non dependant
variables;

2) The omission of one or more regressor variables
3) That the regression should have an autoregressive structure.

If ‘1’ is important, different models can be specified and interaction terms among independant
variable included.

If ‘2’ is the main cause of the auto correlation, additional variables may be suggested by plotting
residuals on a map and looking for regular patterns.

If ‘3’ is thought to be the main cause, some kind of transformation needs to be carried out (refer
to chapter 5 Cliff and Ord, 1973)

Uses of assessment of spatial autocorrelation:

identification of patterns which may reveal an underlying process,

describe a spatial pattern and use as evidence, such as a diagnostic tool for the nature of
residuals in a regression analysis,

as an inferential statistic to buttress assumptions about the data,
data interpolation technique.

How to Correct for Spatial Autocorrelation in Regression:

indicates incomplete model, there may be a missing variable. Therefore add an additional
variable which may change data pattern.

incorrect model specification. The data may not be appropriate for a linear fit, or a non-
spatial effect may be manifest in the residuals, nuisance spatial autocorrelation.
Substantive spatial autocorrelation occurs when there is missing values.

dominant or extreme cases, outliers, which should have been found at data screening
stage.

systematic measurement error in response variable (non-random). A case in which error
increases as values increase, or vice versa.

regression model is inappropriate, reflects the need for an explicitly spatial model. A
spatially autoregressive model which incorporates a spatial lag operator into the
regression computation. The approach for the implementation of spatial autoregressive
models is as follows:

o establish nature of spatial dependency,

use information to choose appropriate model form,
fit model using maximum likelihood operators,
calculate residuals from model],

test residuals, and

© O o o o

adjust model based upon residuals. (after Haining, 1990)


http://cfs.nrcan.gc.ca/subsite/wulder/outliers�
http://cfs.nrcan.gc.ca/subsite/wulder/regression�
http://cfs.nrcan.gc.ca/subsite/wulder/references�
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APPENDIX A

Computational Formulas, expected values, and variances of autocorrelation statistics
Nominal Data (for K > 2 classes or types)

Join counts
n
li
Total joins A =3 i=1

For localities of the same type:

1 R
2 i
Number of rr joins = is
WnZ
,(BB)y= —
Expected values or rr joins (’ul( ) 2Zn? ,

Expected variance:
wz=Kia 3 (S, inzzymz +($,2-251)yn,r'3ym'3 + (kW23 ,2+ S,1-52)yn,r'"HHym'd — W'2 E(myr"2)m2331"

For localities of different types

1 .
E E wii IS lij
Number of rs joins = ij
; _ Wnyeng
Expected Values of rs joins: # BB) = n?

Morans statistic

Expected values: 1 = -(n-1)—1
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Expected variance:

n [(nz _31+3)31_n_5'2+3[,1!2]_b2 [(nz —anl—ZTLS'z-FﬁWz (S, - 25, )n?

#: = 3
m-17w2 "
Adjacency and Weighted Matrices
A. Source data B. Adjacency matrix, W
+4.55 | +5.54 [ (R (R [ S U A R ]
+2.24 | -5.15 | +9.02 I T T T I A
+3.10 | -4.39 | -2.09 B e s s T U U Ll
+0.4’6 '3-06 4 t a 1 a 1 [+] 1] 1 o o
£ Q 1 o 1 o 1 o o 1 0
L3 o 2] U o 1 @ o L L] 1
T [+] (1] i (1] 1] o 1] i (1] 0
L] o a 0 1 o o o 1 a
: o o o a 1 o o 1 o 1
A0 o a a o o a L1) 1 o
A. Computation of variance/covariance-like quantities, matrix C
Var/Covar matrix 1 2 3 4 5 i3 T 8 9 10 |Diagonal values:
zli) [z(i)-mean] 122 208 353 $17 541 -056 452 300 -311 -408] (z(i}-mean)*2
1 224 122] 148 253 430 -752 -659 -068 550 974 -379 497 148
2 310 208 253 4.32 733 1283 113 a7 938 1662 -64T7 -8485 4 32
3 455 353) 430 733 1245 -2177 -1909 -198 1584 2822 -1098 -14.40 1245
4 515 87| -752 -12.83 -2177 3808 3340 347 -2789 -4936 1921 2519 3809
5 -4 349 -2A41] -6589 -11.25 1809 3340 2079 304 -2445 4309 1684 2209 23,29
6 048] -056| -068 -117 -188 347 304 032 254 448 175 220 032
7 554) 45| 550 939 1594 -2789 -2445 -254 2041 3613 -1405 -18.44 2041
8 9.02 800| 974 1662 2822 -4936 -4329 -449 3613 6397 -2489 -3265 6397
) =208 -3 1] -3.7 -G47 -1083 1921 1684 175 1406 -2489 9638 1270 358
10 308| 408 497 -848 1440 2518 2200 270 -1844 -3255 1270 1666 16 66
Maan 1.02 550 156.68|
sp| 467 4.67|
B. C*W: Adjustment by multiplication of the weighting matrix, W
1 000 253 000 -752 000 000 000 000 000 OO0 499
2 253 poo QoD 000 -1125 000 Q00 (.00 000 Q.00 -3.72
3 000 000 000 -2177 000 000 1584 000 000 QOO0 -5.84
4 752 000 -M77 000 3340 000 000 4935 000 000 4525
3 ooo -1125 D00 3340 000 304 000 000 1684 0.00 42 104
6 000 000 000 000 304 000 000 000 000 229 5.34
7 D00 000 1594 000 000 000 000 3613 000 Q00 5207
& 000 000 Q00 4936 000 OO0 3613 000 -2489 0.00 -3312
g 000 000 000 000 1684 000 000 -2489 000 1270 466
10 D00 000 000 000 000 229 000 000 1270 000 15.00
Covar 55 16.19
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CHAPTER 12 PRIMER ON SPATIAL-TEMPORAL ANALYSIS
Timothy ]. Bartley

Spatial-Temporal Analysis

from <http://en.wikipedia.org/wiki/Spacetime>

I. Space and Time

. d d
’. L ...‘.
) e o . 3
T ‘.
: L .«
Time — ) Space -
— AR *1*T e . * o RE .. L
. ° 2 20 1o * ) See
—— ., . b o ¢ oo P L * . le
PAFS X | * ..“ ... . .. )
o o . o 1@ . L P
e .. ,‘ .0 e - s * .I . * .
. - * o—P > L)
i o b Se = * 2 late? L
. « | ® . .
e e % e . . . . LA
T Space —» T Space —» T Space —»
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II. Autologistic Regression in Space and Time

a.Linear regression
= used to examine the relationship between one or more independent variables
(X;) and a continuous dependent variable (Y;)

= least squares function
Yi=By+ BXy + BXyi+ ot BiX; +E  where I=1..,n

b. Logistic regression
= used to predict the probability of occurrence of an event
= fit data to a logistic curve using a logit model
= the dependent variable (Y ) is binary (0,1 or present/absent)

Bo+PiXy+BoXy +.t X

e
l1+e

V4
In(E) =B+ BX + BX,+ ..+ BX;+& OR 7, = RNy S Iy
7 = probability that Y = 1 for a given X

B,= intercept

B, = coefficent that relates observed occurrence Y to covariates

X; = covariates (explanatory variable)

& = binomially distributed error term

c.Maximum likelihood
= used to evaluate logistic regression
= least squares cannot be used for model with binary dependent variable
= fits values for the parameters which maximize the probability of obtaining the
observed data
= the set of values which give the greatest likelihood are used as estimators of the
parameters of interest

A=InL :ﬁln £(90: B0 Bis-: ;)

n=1
L = the likelihood function
g,=each of N total observations

B;= parameters which are to be estimated

= significance can be tested by taking the ratio of each parameter estimate to its
standard error (the z-ratio), with values of magnitude 1.96 or greater significant
at the o = 0.05 level

= significance can also be tested using Monte Carlo maximum likelihood
simulations


http://en.wikipedia.org/wiki/Independent_variable�
http://en.wikipedia.org/wiki/Least_squares�
http://en.wikipedia.org/wiki/Probability�
http://en.wikipedia.org/wiki/Logistic_curve�
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= best model fit can be determined in several ways including though the use of
information criteria, such as Akaike’s information criterion (AIC), deviance
information criterion (DIC), or Bayesian information criterion (BIC)

d. Autologistic regression
= logistic regression model with extra explanatory variables representing spatial
effects
= incorporates spatial dependence to account for potential autocorrelation

T
In
(1—7r

) =B, + Zﬂjxj,i + zakYk,i + &
i j k
7 = probability that Y = 1 at position i for a given X,
Y =binary (0,1) occurence
pB,= intercept
B; = coefficent that relates observed occurrence Y to covariates

X; = covariate (explanatory variable)
o, = coefficient that relates observed occurrence Y at position k to predicted

probability of occurrence 7 at position i
& = binomially distributed error term

= Neighbour order (1)
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oxo -x' coxoo

First Order (1=1) Second Order (1=2) Third Order (1=3)

= Spatial terms can be averaged into a single spatial autocovariate (assuming
isotropy)

) ﬂo+2ﬂj X;i+s(Y)+¢g where
ZWkYk,i 1

s(Y;) =f—— and w, «

2w,

e.Spatial-temporal autologistic regression model (STARM)
= logistic regression model with extra explanatory variables representing both

spatial and temporal effects

In(1

distance, ;

) ﬂ0+2ﬂjlet+ ZaJ+I Zth—}_Zé‘\HKH it— f+g

In(
keN®

1

response intercept variables  space time error

7 = probability that Y = 1 at position i for a given X,

B,= intercept

B, = coefficent that relates observed occurrence Y to covariates

X; = covariate (explanatory variable)

a= coefficient that relates observed occurrence Y at position k from neighbourhood

| to predicted probability of occurrence 7 at position i

& = binomially distributed error term

f = each of F total time lags

o0 = coefficient that relates observed occurrence Y at position k and time lag f to

predicted probability of occurrence 7 at position i
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Y foreach k attimet-f mthatY=1atiattimet

= achieved using ‘Markov random fields’
= define the probability of an event based on a number of variables

P(Y, =1]Y, ke N,Y, :t'=t-1L. ,t-F)
— probability that Y at position i and time t is equal to 1 given the neighbours k
in the neighbourhood N, and given Y at time lags from t-1to t—F

Example: Mountain pine beetle outbreaks in British Columbia.

Predicted Risk of Outbreak

. ]0.06-0.25

0.26 - 0.50

0.51-0.75

- 0.76 - 1.00

black spots represent actual outbreaks

Variable type Variable Explanation and raionale
Temponal lag! Presencefabsence of mountain pine beetle in a cell the previous year,
lag 2 Same, two years pn-\'irum
lag 3 Same, three years previous.
Spatial Ist nbhd First-order neighborhood inearess for neighbous).
2nd nbhd Second-ord (nearest cight
infestations Murmber of discrete infesations in each cell, This differs from the

mesponse variable, the presence/absence of red attack in each cell,

Environmental tmin Minimum temperature over calendar year,

b Maximum temperature over calendar year.

tmean Mean femperature over calendar year.

cold Number of days cold enough to cause lethal mortality to overwintering
larvae, after Wygant (1940, Temperatures less extreme than —37°C can

be bethal early and late in the year, and complete mortality occurs when
larvae are exposed to temperatures. < = 37°C for short periods (Wygant
1940, Somme 1964, Seahl et al. 2006k

warm'" Mean August temperature. Development and emergence of new
mountain pine beetle adults is closely govemed by temperature. Peak
ilight ocours in a narmow window in summer (McCambridge 1971,
Satranyik 1976, Safranyik and Carroll 2006),

ddeg® munm‘ ated degree days above 5.5°C from August to end of grwing
.....

dd* Aecumlated diegree days above 5,5°C from August in previous year 1o
current July,

Pla* W1 indicator variable; sufficient heat accumulation to hatch 50% of
wqtgs before winter (306°C degree days)

Pl W1 indicator variable; sufficient heat accumulation to develop and
emenge on a univoltine life cycle (B33°C degree days

P2 W1 indicator variable if minimum winter temperatures were higher than

40°C,

clevation Mean clevation of cell, based on 25 sampled points (regular d\l)n

within cell, This may be a wseful proxy for host tree distribution,

lodgepole pine do not grow at high elevations over our study asea.

(Aukema et al. 2008)

Synopsis: Spatial-temporal autologistic regression model (STARM) can be used to examine the
probability the occurrence of an event across a spatial lattice over discrete time points.
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Travelling Waves in Space and Time
= “Travelling waves in cyclic populations refer to temporal shifts in peak densities
moving across space in a wave-like fashion” (Johnson et al 2004).
= used to examine the partial temporal synchrony or asynchrony of populations

which are spatially separated /

Time 55555555 >>H>H>>

(from Kaitala and Ranta 1998)
= Data needed are estimates of population density (or other population factors) at
different sites over time

L :
L ijm%a_ﬁ

L*L@;_

time series for several spatial locations (from Moss et al 2000)

U

First, must determine a relationship between distance and dynamics (using
Mantel correlation between two matrices, for example)

Second, fit a model to the data

Typically based on generalized additive models (GAMs)

Take a temporal pattern and add time lags based on location

For a distribution (normal, binomial, etc.), represents a function gthat links the
expected value E(Y) of the distribution to the parameters f_(x,,)

LUy

g(E(Y)):ﬂo+ f1()(1)+ fz(xz)+---+ fm(Xm)

= Models for travelling waves typically links a demographic variable (usually
density) to spatial, temporal and other factors

IoiDit =m, + th, + s(t + r(coséy; +sm65<))+gt

response' long term trend l error

mean spatial and temporal effects
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D.,= demographic variable of interest

m = long term mean of D at i

b, =long term trend at i

s = function representing temporal and spatial pattern
1

oC—
distance
0 = angle between direction of wave and North

r

Direction of
traveling wave

(% ¥}

(from Moss et al. 2000)
where p,(6) = r(coséy, +sinéx;)

= The s function can be any number of potential equations

= Parameters r and @ are estimated by iterative analysis of deviance, with values
forr and @ with a minimum deviance considered the best fit

= Assumes unidirectional movement (one spatial axis)

(b)
h t=40000

ﬁ

prey, with incr. time

S| S(E1 5151212151515 8 51121 21212 S S B8 518 F 20000

0 500 1000 1500 2000
space, X

(from Sherratt and Smith, 2008)

G}
I
X
o
jaeu
aq
jus,
I
a
lus;
an
Gl
]

= Can also fit a model for radiating rings from a central point
= Models can also use second order partial differential equations
= Third, test for significance
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= Significance can be tested by comparing the deviance of models iteratively
randomly re-assigned to locations to the deviance for models of the observed
data

= Can be considered at a variety of scales

(MacKinnon et al. 2001)

Example: Modelling predator - prey travelling waves.

Prey Predators

t=1394

[P B ) S B B B s YR PV 0
0 200 400 600 BOO O 200 400 600 800

(From Sherratt 2001)

= observed in larch budmoth, red grouse, voles, lemmings, lynx (see Sherratt and
Smith 2008)

(Sherratt and Smith 2008)

Synopsis: Travelling wave models can be used to test for and estimate patterns in spatial asynchrony
in temporal population dynamics.

III. Spectral Analysis in Space and Time
= Can be used to deconstruct time series distributed in space into component
frequencies
= Requires that data are collected at even intervals in both space and time
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Examples: Spatio-temporal patterns of rainfall.

10",

10"

Spectral desnity
s10°
10"
10°
x-coordinate “"’Tk:,‘;\\/,‘;;/ﬁ’/{ y-coordinate
o, K] “ “ o, i1m)

(from De Michele and Bernardara 2005)

Mapping brain activity in space and time.

(a) BASELINE 1 (b) BASELINE 2

SIS Ol®

DELTA bs THETA DELTA bos THETA

5

los los.

= O OO
Fig1 Electrode montage BETA aLpHA

ALPHA BETA

4

(from Santhosh et al. 2008)

IV. Wavelet Analysis in Space and Time
= Recently have been applied to examine travelling waves in space and time

Examples: Travelling waves in the larch budmoth.

(from Johnson et al 2004)

Travelling waves in host-parasitoid interactions.
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x-coordinate Distance
(from Liebold et al. 2004)
V. Kriging in Space and Time
. 0] (@) ol ib)
correlation
z'" in.)
T e B S e
spatial lag temporal lag
Eglrn) 1
correlation
::
1;‘%” o
n‘:v.m\nb""""

W

temporal lag

spatial lag

(from Douaik 2005)
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