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Chapter 1 : Preliminaries 
Course Objective: 
The objective of the course is to develop the ability to understand and communicate temporal 
and spatial concepts used in contemporary ecology.  We will do so by reading and interpreting 
the peer-reviewed literature and through consultation with references on statistical techniques.  
This seminar course is not, however, designed as a statistics courses, rather it will endeavour to 
engage and develop numeracy in this important area.  Each weekly session will focus on one of 
the selected topics1 listed below by providing (1) a “primer” on the method and (2) a critical 
evaluation of selected readings2.   All participants are expected to contribute to the discussion. 
Each student will provide one session on spatial and a second on temporal analysis. 
2We will focus on peer-reviewed readings from the following journals: Journal of Geophysical Research, Limnology & Oceanography, Nature, 
Proceedings of the National Academy of Science, Proceedings of the Royal Society, and Science.  
 

Course Readings: 

Chapter 2 – Primer on Temporal Analysis  

Lacasa L., B. Luque, F. Ballesteros, J. Luque, and J.C. Nuno 2008. From time series to complex 
networks: The visibility graph. PNAS 105: 4972-4975. 

Raupach, M.R., G. Marland, P. Ciais, C. Le Quere, J.G. Canadell, G. Klepper, and C.B. Field 2007. 
Global and regional divers of accelerating C02 emissions. PNAS 104: 10288-10293. 

 

 Chapter 3 - Primer on Temporal Smoothing 

Carrington E. 2002.Seasonal variation in the attachment strength of blue mussels: Causes and 
consequences. Limnol. Oceanogr.  47: 1723-1733. 

Knudsen, E., A. Linden,  T. Ergon, N. Jonzen, J.O. Vik, J. Knape, J.E. Roer, and N.C. Stenseth, 2007. 
Characterizing bird migration phenology using data from standardized monitoring at bird 
observatories. Climate Research 35:59-77.  

 

Chapter 4 - Primer on Temporal Autocorrelation 

Korpimaki, E., K. Norrdahl, O. Huitu, and T. Klemola 2005. Predator-induced synchrony in population 
oscillations of coexisting small mammal species. Proc Royal Society B 272: 193-202. 

Thirgood, S.J., S.M. Redpath, D.T. Haydon, P. Rothery, I. Newton, and P.J. Hudson 2000.  Habitat loss 
and raptor predation: disentangling long- and short-term causes of res grouse declines. Proc 
Royal Society B 267:651-656.  

 

 Chapter 5 - Primer on Spectral Analysis  

Emerson, C.W., and J. Grant 1991. The control of soft-shell clam (Mya arenaria) recruitment on 
intertidal sandflats by bedload sediment transport. Limnol. Oceanogr.  36: 1288-1300.  

Haydon, D.T., D.J. Shaw, I.M. Cattadori, P.J. Hudson, and S.J. Thirgood 2002. Analysing noisy time-
series: describing regional variation in the cyclic dynamics of red grouse. Proc Royal Society B 
269:1609-1617. 

 

 Chapter 6 - Primer on Wavelet Analysis 
Cazelles, B., M. Chavez, D. Berteaux, F. Menard, J.O. Vik, S. Jenouvrier, and N.C. Stenseth 2008. 

Wavelet analysis of ecological time series. Oecologia 156: 287-304. 
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Rouyer, T., J.M. Fromentin, N.C. Stenseth, and B. Cazelles 2008. Analysing multiple time series and 
extending significance testing in wavelet analysis. Mar. Ecol. Progr. Ser. 359: 11-23.  

 

 Chapter 7 - Primer on Coherence 

Aragao, L.E., Y. Malhi, N. Barbier, A. Lima, Y. Shimabukuro, L. Anderson, and S. Saatchi 2008. 
Interactions between rainfall, deforestation and fires during recent years in the Brazilian 
Amazonia. Proc Royal Society B 363: 1779-1785. 

Platt, T., and K.L. Denman 1975. Spectral analysis in ecology. Annual Reviews 6: 189-210. 
Rowe, P.M., and C.E. Epifanio 1994. Tidal stream transport of weakfish larvae in Delaware Bay, USA. 

Mar. Ecol. Progr. Ser. 110: 105-114. 
 

 Chapter 8 - Primer on Spatial Distribution 

Arocena, J.M., and J.D. Ackerman 1998. Use of statistical tests to describe the basic distribution 
pattern of iron oxide nodules in soil thin sections. Soil Sci. Soc. America J. 62: 1346-1350 

Frohlich, M., and H.D. Quednau 1995. Statistical analysis of the distribution pattern of natural 
regeneration in forests. Forest Ecol. Manag.t 73: 45-57.  

Morales, J., J.J. Martinez, M. Rosetti, A. Fleury, V. Maza, M. Hernandez, N. Villalobos, G. Gragoso, 
A.S. de Aluja, C. Larralde, and E. Scuitto 2008. Spatial Distribution of Taenia solium Porcine 
Cysticercosis within a Rural Area of Mexico. PLOS 2: 284-290 

 

 Chapter 9 - Primer on the Use of Indices to Determine Spatial Patterns 

Hurlbert, Stuart H., 1990. Spatial distribution of the montane unicorn. OIKOS 58: 257-271. 
Stephanis, R., T. Cornulier, P. Verborgh, J.S. Sierra, N.P. Gimeno, and D. Guinet 2008. Summer 

spatial distribution of cetaceans in the Strait of Gibraltar in relation to the oceanographic 
context. Mar. Ecol. Progr. Ser. 353: 257-288. 

 

 Chapter 10 - Primer on Spatial Smoothing 

Akhtari, R., S. Morid, M.S. Mahdian, and V. Smakhtin 2009. Assessment of areal interpolation 
methods for spatial analysis of SPI and EDI droughts indices. Inter. J. Climatol. 29: 135-145. 

Conrad, K.F., I.P. Woiwod, J.N. Perry 2002. Long-term decline in abundance and distribution of the 
garden tiger moth (Arctia caja) in Great Britain. Biol. Conserv. 106: 329-337.  

 

 Chapter 11 - Primer on Spatial Autocorrelation 

Koenig, W.D. 1997. Spatial autocorrelation in California land birds. Conserv. Biol. 12: 612-620. 
Koenig, W.D., and J. Knops 1998. Testing for spatial autocorrelation in ecological studies. Ecography 

21: 423-429 
 

 Chapter 12 - Primer on Spatial-Temporal Analysis 

Aukema, B.H., A.L. Carroll, Y. Zheng, J. Zhu, K.F. Raffa, R.D. Moore, K. Stahl, and S.W. Taylor 2007. 
Movement of outbreak populations of mountain pine beetle: influences of spatiotemporal 
patterns and climate. Ecography 31: 348-358.  

Moss R., D.A. Elston, and A. Watson 2000. Spatial asynchrony and demographic traveling waves 
during red grouse population cycles. Ecology 81: 981-989.  
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COMPONENTS OF A SCIENTIFIC PAPER 
A GUIDE TO SCIENTIFIC COMMUNICATION 

 
© 2005 J. D. Ackerman 

 
The Nature of Scientific Reports  
This is the major form of scientific communications that exist for both students and professional 
scientists. It is the vehicle for reporting the results of scientific inquiry. These inquiries are based 
on the use of the scientific method, which aims to identify data through experimental methods 
(i.e., the hypothetico-inductive approach) or theoretical development (i.e., Modelling) that are 
objective, replicable (repeatable), and predictive of future inquiry. In this sense, the approach of 
science is incremental as it builds on existing data. It is essential that scientific reports identify 
the purpose or relevance of the work as well as provide an indication of the “take-home 
message” or conclusion of the study. This can only be achieved through a discussion of other 
works in the scientific literature.  
 
The best way to improve your communications skills is to read as much as possible. You should 
refer to the journal articles to determine why the scientist used a particular form of 
communication (e.g., a scatter plot versus a bar chart). This will help you in developing your 
style.  
 
Cover Page  
A cover page with the appropriate information pertaining to the assignment and authorship (e.g., 
Title, Date, Name, Student Number) is required.  
 
Presentation  
The presentation of scientific reports is of great importance, and care must be taken to ensure 
that it is legible and consistent in style. The presentation should be double spaced throughout 
including the abstract. The pages should be numbered consecutively beginning on the first text 
page (i.e., the page after the cover page). The page number should appear centered at the bottom 
of the page (i.e., as a footer).  
 
Abstract or Executive Summary  
An abstract is a short/concise paragraph(s) that describes the motivation/ relevance, hypothesis 
examined, techniques, findings and conclusion/significance of the study. It is meant to provide 
the reader with a guide to what is reported in the main body of the paper. Figures, tables, and 
citations to the literature are not included in this section. With the large volume of literature, it 
may be the only part of a report that is read (e.g., on-line search) and is, therefore, probably the 
most important part of the report. Be sure to end the abstract with a concluding statement 
outlining the relevance and implication of the major finding.  
 
Introduction  
The Introduction provides the background for the study as well as identifying the relevant 
hypothesis that will be examined. It usually begins with a brief review of the scientific issue 
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related to the report and describes the findings of other researchers. The presentation is usually 
from the general to the more specific and this provides a perspective to the reader. The review 
also provides an opportunity to identify the theoretical foundations of the subject, gaps in our 
understanding, and areas of inquiry that require additional examination. In essence, it provides 
the motivation or purpose for undertaking the study and, presents the hypothesis to be 
examined.  
 
Materials and Methods  
The Materials and Methods section provides a relatively complete description of the 
methodology that was used in the study. It should be detailed in such a way that any other 
scientists can replicate the study, although it is not necessary to detail accepted/common 
techniques that exist in the literature (journal articles and/or texts). These techniques should be 
referred to as citations and any modifications to them should be stated clearly.  
 
This section can begin with an explicit statement of the Null Hypothesis (i.e., the results of the 
different treatments are equal) to be tested or this can be incorporated within the text. In some 
cases, it is appropriate to provide section headings for particular portions of the study such as, 
“study site”, “survey design”, “laboratory analysis” and “statistical analysis”. The general 
approach is to report what was done chronologically. Generally, you should not report the 
motivation for your choice of techniques, nor should you report any results in this section.  
 
Results  
The Results section provides an opportunity to present the findings or the data revealed from 
your scientific inquiry. This is achieved through describing in prose what was observed as well 
as providing tabular and/or graphical results to illustrate the description. Both of these elements 
are necessary for the report and it is generally useful to include tables and/or figures in the text 
rather than at the end of the report. As was stated above, it can be useful to include subheadings 
if these are meaningful and help to clarify the report. The results should be presented but not 
discussed. Remember that your data are never wrong but your interpretation may be. Therefore, 
there should be no interpretation of the relevance/significance of the findings with respect to 
the Null Hypothesis or the literature, as these are included in the Discussion section.  
 
Data - Data are plural and should be referred to in this manner (i.e., “the data were…”). 
Consequently and as a result of uncertainty in our techniques, measurement error, etc., it is not 
generally possible to refer to a single result. Rather, we refer to the distribution of the data by 
including the mean (central tendency) and the standard error (dispersion) of our observations. 
The standard error (standard error = standard deviation/square root of the sample size) allows 
us to compare the results of different experiments and is the basis of many statistical tests. It is 
also important to account for uncertainty and track the propagation of errors within reports (see 
section on Statistical Analysis).  
 
Figures - Figures provide an illustration of what was undertaken or what was found in a 
scientific inquiry. It is important to note that schematic representations of equipment 
configurations and site maps are extremely useful to include in reports. In terms of the reporting 
of results, it should be recognized that different types of figures are used for different types of 
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data. For example, bar charts are used for reporting categorical data, while scatter plots are used 
for data that vary with another factor such as time or concentration. You should note the mean 
and standard error in the graphical presentation. It is important to ensure that figures are as 
self-explanatory as possible so that a reader can understand them without referring to the text. 
This is achieved through careful consideration of (1) the labeling of constituent elements (e.g., 
axes), (2) the inclusion of units and equations (if necessary), and (3) the figure title and legend. 
Be sure to use scale bars for all drawings, and some form of direction indication (e.g., arrow) for 
all maps. It is generally acceptable to present figures at the end of the report to avoid formatting 
errors when there are a large number of figures.  
 
Tables – Tables provide an opportunity to present results that are not amenable to graphical 
presentation. These may be in the form of lists of results or summaries. As above, it is important 
to ensure that tables are as self-explanatory as possible so that a reader can understand them 
without referring to the text. This is achieved through careful consideration of the labeling of 
rows and columns along with units and, and the use of table title and legend.  
 
Discussion  
The Discussion section is where you interpret the relevance/significance of your findings with 
respect to the Null Hypothesis and the scientific literature. In other words, this is where you 
explain the meaning of what you found. You should work from the specific to the general to show 
both what your results mean in the context of the study and within the context of the scientific 
literature. Generally you would begin with a statistical examination of the data and you would 
either accept or reject the Null Hypothesis. This would be followed by a treatment of the 
implications of acceptance/rejection of the Null Hypothesis and the significance of this 
evaluation.  
 
This section is where you would address the questions posed in your Introduction. You should 
endeavor to incorporate your findings into the larger context of scientific understanding and 
literature. The limitations of your approach, ways to improve it, and potential future inquiries, 
can also be presented.  
 
Conclusions  
The Conclusion section provides you an opportunity to express the principal findings from your 
scientific inquiry. It generally is a brief paragraph(s) in which you report your findings and the 
relevance/significance of these from the perspective of your hypothesis and the literature. It 
concludes the report by addressing the issues, questions, and hypotheses posed in your 
Introduction section. In many cases, the conclusions may include new hypotheses, issues and 
hypotheses.  
 
Literature Cited  
This is where you provide the bibliographical information for literature that you referred to in 
the report. You should only include literature that was cited since this is not a bibliography. 
Please note that Internet sources and class notes are not permitted (i.e., do not cite any 
information that was not found in a credible scientific source).   There are several accepted ways 
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in which to cite literature (e.g., CBE) and these can vary according to the specific journal. Please 
use the following as a guide for your reports:  
 
Journal Article.  
Ackerman, J.D., Loewen, M.R., and P.F. Hamblin. 2001. Benthic-pelagic coupling over a zebra 
mussel bed in the western basin of Lake Erie. Limnology and Oceanography 46(4):892-904.  
 
Book.  
Lobban, C.S. and P.J. Harrison. 1994. Seaweed Ecology and Physiology. Cambridge University 
Press, New York. 366 pp.  
 
Book Chapter.  
Givnish, T.J. 1989. Ecology and evolution of carnivorous plants. pp. 243-290 In: W.G. 
Abrahamson (ed.) Plant-Animal Interactions. McGraw-Hill, New York. 480 pp.  
 
Technical Report.  
French, T.D. and P.A. Chambers. 1995. Environmental factors regulating the biomass and diversity 
of macrophyte communities in rivers, with emphasis on the Nechako River, British Columbia, 
Canada. Report # 000 prepared for the BC Ministry of Environment, Prince George and Victoria. 
114 pp.  
 
Appendix  
This is where you would include supplementary information that does not belong within the text 
of the report, but is relevant for the study. Copies of your original data forms, chart recordings, 
etc., would be included in an Appendix.  
 
Note on non-experimental papers  
Under certain circumstances (e.g., review articles, position papers), the traditional reporting 
methods described above may not necessarily be followed. (This is especially true for the 
Materials and Methods section, although in many situations, data selection and analysis are 
described in the M&M). In these cases, it is customary to deviate from these approaches through 
the use of headings to direct the reader. For example, headings may include: Abstract, 
Introduction, Literature Background, Position Statement, Alternative Views, Supporting 
Evidence, Discussion, Conclusions, Literature Cited.  
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Statistical Distributions 
 
(1) Continuous distributions 

 Normal Distribution ,  

standard normal       when   = 0 and  = 1 

 

 Uniform Distribution  

  standard uniform  when A = 0, B = 1 

 

 Cauchy Distribution ,  

  standard Cauchy  when t = 0 and s = 1  

 

 t Distribution  

where  
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 F Distribution  

    Where  
 
 

Chi-Square Distribution  

   where    

 

Exponential Distribution  

   Standard exponential , = 0 and = 1 

 

 Weibull Distribution 

 

   Standard wiebull , = 0 and = 1 

 

Lognormal Distribution  
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  Standard lognormal , = 0 and m = 1 

 

 Fatigue Life Distribution  

    

 Standard Fatigue life  = 0, = 1 

 

Gamma Distribution  

    Where  

Standard Gamma , = 0 and = 1 

 

Double Exponential Distribution  

   Standard double exponential , = 0 and = 1 
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 Power Normal Distribution   

 
 

 Power Lognormal Distribution  

     

 

 Tukey-Lambda Distribution  No simple, closed form, so must be computed 
numerically 
 

 Extreme Value Type I Distribution Gumbel  

Standard Gumbel Min =  

 
 

 Beta Distribution   

    Where  
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  Standard beta  a = 0, b = 1 

 
 
 
 
(2) Discrete distributions 
 

 Binomial Distribution  

 

  Where   

 
 
 

 Poisson Distribution    

 
 
 
 
 
See: 
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, 
date. 
 
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366.htm 



J.D. Ackerman 

12 

 

CHAPTER 2: PRIMER ON TEMPORAL ANALYSIS 
Josef Daniel Ackerman 

 
• Time Series: Many variables fluctuate in time (e.g., water speed; bird sightings), when 

measurements are made through time 

 

so we have  u   =  mean speed 

      u'   = fluctuation from u  

       u    = instantaneous speed 

       u    = u  + u' 
 

• Fundamental Question: Are observations close in time more related (dependent)? 

• Discrete Time Series vs. Continuous Time Series – type of sampling 

• Eulerian Observation vs. Lagragian Observation – frames of reference  

• Underlying Process vs. Modeling/Forecasting – motivation 
 
• Patterns in time series  

I – Systematic Patterns 

• (1) Seasonal effects: - annual variation:  summer vs. winter; diurnal effects, lunar 

• (2) Cycles and Quasi-cycles: - pattern that is not seasonal 

 

 
(Brown and Rothery 1993) 
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• (3) Trends: a smooth underlying, long-term change not seasonal  

• (4) Residual or Random Variation: - irregular fluctuations  

 

II. Types of Random Variation 

•   Recall:  

o Random Numbers from a (1) random number table (tabulation) or via a 
(2) pseudo-random number generator (e.g. seed # to start the process). 

o Random variable is subject to “chance fluctuations” that are confined 
within the bounds as N(0, σ2) – i.e., “uniformly distribution random” 
variable, stochastic. 

 
• (1) Stationary Time Series: - random variation with or 

without serial dependence. 

• Can be inherently stationary vs. where systematic 
trends have been removed. 

• (1)  mean, (2)  mean square, and (3)  ACF 
(autocorrelation function) do not vary with changes 
in t. 

 

• (2) White Noise: - this is an example of a stationary T.S., 1/t 
= µ + zt where zt ~ N(0, 2).  Observations are serially 
independent;  has a spectrum of ~f o  

 

• (3) Pink Noise – intermediate between white and pink, has 
a spectrum of ~1/f  

 

• (4) Brown Noise – values not independent but the 
increments are, has a spectrum of ~1/f 2 – may be good 
predictor of turbulence 

 
• Analysis of Time Series       (Schroeder 1992) 

• Time domain – statistical approaches, autocorrelation etc  
• Frequency (f = 1/t) domain– spectral analysis, wavelet analysis 

 
• Statistical Representation 

• Graph the information using appropriate temporal scale 
• Measure central tendency, and variation (more important?) 
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• Time average 
• Mean value of the time series 
• Ensemble Average 
• Average the results of all occurrences that occur at time t = t as replicates, i.e., 

consider the separate time series as "replicates"  
• Ergotic 

• time series is ergotic if it is stationary (mean is the same for any t1) and the 
time average is the same as the individual ensemble averages 

 
• Transients 

• sometime you get a burst (or gust) that looks like a non-stationary process 
• indicate that the series is not ergotic 
 

• Decomposition 

• Decompose the time series into its components. (e.g., trend; cycle, season, 
“noise” or residual) e.g., Observation = trend + cycle + seasonal variation + 
random variation  

• Same dataset as above: 

 

 
 

 
• Identify patterns 

(1) Cyclical Patterns ~ Review of Periodic Function 

 

C
os

(α
) 



Spatial and Temporal Analysis in Ecology: A Primer 

15 

 

 
 

• Consider the cosine curve 
• Four steps to describe the function  y = cos α 

 
• t = independent variable; α - phase angle (depends on t), l = unknown period 
 

(1) so
l

t or
l

tα α
π

=
°

=
360 2

 

 

l
360= ωif °  or 

2π
l

,   ω = angular frequency, which indicates how often l 

occurs in 1 rotation (360º or 2π rad.) 
 

  α = ωt   or   y = cos ωt 
 

 If there is no peak at t = , then it occurs at to 0 < to  <  l 
 So if there is a peak at t’ = t + to or at t = (t’ - to), but we drop t’ (i.e., a delay) 

 
(2) Now y = cos ω (t - to), where to = arc phase position when first peak occurs 
 
(3) What about the amplitude (we not dealing with a perfect curve:  - 1 ≤ cos ω ≤ 1) 

Add factor “c”, y = c cosω (t - to) 
 

(4) What happens if y oscillates around c by co? 
y = co + c cosω (t - to) 

also recall that:     cos ω (t - to) = cos (ωt - ωto) 

         = cos ωt cos ωto + sin ωt sin ωt 

but: cos ωto + sin ω to  constants: a = cos ω to, b = sin ωto 
 
so:  y = co + a cos ωt + b sin ωt  also y = c0 +a cos2πft + bsin2πft  

• This is the general form that we use to describe any periodic function 

 

References: 

Bendat, J. S.  and A. G. Piersol. 1986 Random data: Analysis and measurement procedure,  2nd 
edition, John Wiley. 

Brown, D., Rothery, P. 1993. Models in Biology: mathematics, statistics and computing. J. Wiley. 

Schroeder M. 1992 Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. W.H. 
Freeman. 
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Chapter 3: TEMPORAL SMOOTHING 
Justin Sheehy 

 
What is smoothing? 
Smoothing is a statistical technique in which an approximating function is created in an attempt to 
capture important patterns in a set of data, while leaving out noise or other fine-scale structures/rapid 
phenomena. It is a process by which data points are averaged with their neighbours in a series, such as 
a time series. This process tends to blur the sharp edges in the data, giving it a “smoother” appearance.  
 
Benefits of Smoothing Data 

• Great for seperating general trends and broad patterns from noisy data 
• Gives a better visualisation of variation across space and time 
• Maximises access to data that would otherwise be hidden  

 
Problems with using Smoothing Data 

• Smoothing data transforms the data 
• Smoothed data is correlated based on kernel 

 
Types of Smoothing 
Note: There are several types of smoothing, but this primer will only focus on the statistical or 
mathematical forms of smoothing which are typically used in temporal (or spatial) studies. 
 
Moving average  

• Also called a rolling average or running average 
• Can be applied to any data set, but commonly used with time series data to smooth out short-

term fluctuations and highlight longer-term trends or cycles. 
• Often used to try to capture important trends in repeated statistical trials 
• Creates an average of one subset of the full data set at a time with each number in the subset 

given an equal statistical weight.  
• Not a single number, but it is a set of numbers, each of which is the average of the 

corresponding subset of a larger set of data points.  
• For example, if there is a data set (N = 50), the first value could be the moving average or mean 

of data points 1 through 10. The next value would be the mean of data points 2 through 11, and 
so forth, until the final value, which would be the mean of data points 40 to 50. 

• The subset size being averaged is often constant, but does not need to be.  
 
Simple Moving Average 
A simple moving average (SMA) is the unweighted mean of the previous n data points. For example, a 
5-day simple moving average of population abundance is the mean of the previous 5 days abundances. 
If those abundances are pM, pM-1… pM-4 then the formula is: 
 

 

SMA =
pM + pM −1 + ...+ pM −4

5  
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Central Moving Average 
A problem with simple moving averages is that they create a shift in the data, induced by only using 
“past” data. For many temporal and spatial studies, it is optimal to avoid this shifting, thus a central 
moving average can be determined using both “past” and “future” data. The “future” data in this 
calculation are not predictions, but simply data that was obtained after the time at which the average is 
to be calculated. If one was to calculate the CMA for a data set using the previous 5 days of 
information and the 5 days after the data point, the formula would be: 
 

 

CMA =
pm−5 + ...+ pm−1 + pm +1 + ...+ pm +5

10  
 
 
 
Example 
For example, a fictitious researcher measured the number of termite larvae hatched daily for 80 days, 
and determined the proportion of larvae which survived each day. The original information was 
recorded and put into a histrogram (Figure 1), which can be seen on the following page. At first, no 
trend could be seen over the 80 days could be seen. Therefore, the researcher decided to perform a 
central moving average smoothing technique in an attempt to find any patterns. 
 
The researcher found that performing a CMA with only 1 value on each side did not present any 
patterns but by using 5 (Figure 5) or 10 values (Figure 6) on each side presented a relatively clear 
trend. The proportion of surviving hatchlings appears to go through cycles of higher and lower 
survival rates.  
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Figure 1: The raw data from the study. 
There does not appear to be any trends in 
the information.  

Figure 2: Data after CMA smoothing , 
using 1 value on each side of data point.  

Figure 3: Data after CMA smoothing, 
using 2 values on each side of data point. 

Figure 4: Data after CMA smoothing, 
using 3 values on each side of data point. 

Figure 5: Data after CMA smoothing, 
using 5 values on each side of data point  

Figure 6: Data after CMA smoothing, 
using 10 values on each side of data point 
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Cumulative Moving Average 

• Also called a long running average  
• A type of moving average where each value is the average of all previous data points in the full 

data set.  
• The size of the subset being averaged grows by one as each new value of the moving average is 

calculated.  
 
The formula for the Cumulative Moving Average, which is usually an unweighted average, for i data 
points would be: 
 

 

CMAi =
x1 + x2 + ....+ xi

i  

 
The formula for the Cumulative Moving Average, for the following data point would equal: 
 

 

CMAi+1 = CMAi +
xi+1 − CMAi

i +1  

 
Thus the current cumulative average for a new data point is equal to the previous cumulative average 
plus the difference between the latest data point and the previous average divided by the number of 
points received so far. When all of the data points arrive (i = N), the cumulative average will equal the 
final average. 
 
 
Weighted Moving Average 

• A moving average which has multiplying factors to give different weights to different data 
points.  

• Has the specific meaning of weights which tend to decrease arithmetically. 
 
An example of a weighted moving average would be; 
 

 

WMAM =
npM + (n −1)pM −1 + ...2npM −n +2 + pM −n +1

n + (n −1) + ...+ 2 +1  

 
 
where each day has a different weighting in the average. 
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Kernel Smoothing 
• The statistical technique for estimating a real valued function with the use of a Kernel.  
• A Kernel defines the shape of the function that is used to take the average of the neighbouring 

points. For example, a Gaussian kernel is a kernel with the shape of a Gaussian (normal 
distribution) curve. 

• Basically, Kernal smoothing is fitting a shape into the random data, to remove some of the 
noise in the data 

 
Steps to Kernel Smoothing 
 
The following figure shows a data series, made of random numbers, taken over 40 days. At first, it 
appears that there are no trends in the information and therefore smoothing should be performed to see 
any trends which may be hiddin in the information.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1) The kernel (or shape of the curve) in 
which the data will be fitted is chosen. In this 
example, the Gaussian (Normal) curve is 
used. 
 

 
Note: 
In most statistical analyses, the width of the 
Gaussian curve is in terms of sigma (δ) or 
standard deviations. However, when the 
Gaussian  curve is used for smoothing, the 
width of the curve is defined using the Full 

Figure 1: The raw data for the study. No trends can be 
seen and there appears to be Noise in the data. * 
(From MRC, 1999) 
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Width at Half Maximum (FWHM). The FWHM is the width of the kernel, at half of the maximum of 
the height of the Gaussian. Therefore, for this example, the maximum height is  around  0.4. The width 
of the kernel at 0.2 is the FWHM.  At x = -1.175 and 1.175 (when y = 0.2), the FWHM equals 2.35. 
Therefore, 2.35 is the FWHM for this example.  

 
 

2) For each data point, a new, 
smoothed value (that is a function of the 
original value at that point and the 
surrounding data points) is calculated. For 
this example, a Gaussian smoothing, the 
function that is used is a Gaussian curve 
with a FWHM value of 4 x-axis units. To 
generate the Gaussian kernel average for a 
data point, the Gaussian shape is centred 
over that value on the x-axis.  All of the 
values in the Gaussian curve are then 
divided by the total area under the curve, 
so that the values add up to 1.   
 
 
 
 
3) The values of the resulting function (in this case a Gaussian function) are generated for each of 
the points in the data.  
 
For example, In this case:  
The Gaussian values for 12,13,14,15 and 16 
are: 
 
0.1174, 0.1975, 0.2349, 0.1975, 0.1174 
 
and the data values for the points are: 
 
1.0645, 0.3893, 0.3490, -0.6566, -0.1946 
 
 
 
 
4) The Gaussian values are multiplied by 
the data values, and the results are added up to get 
the new smoothed value for each point. 

 
 
  

 

The Gaussian Curve centred over the 
14th value in the data set. (From 
MRC, 1999) 
 

The values calculated using the Gaussian 
function centred over the 14th value  
(From MRC, 1999) 
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5) The value of each new smooth point is kept and the smooth value is then calculated for the next 
data point. The result is a smooth version of the original data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kernel Functions 
Several types of kernels functions are used in temporal and spatial studies. The following are the 
equations for each function and a graph of their shape/distribution.  
 
Note: In the notation below, 1(p) means that the function is multiplied by 1 when p is true, and 0 when 
p is false. 
 
Uniform 
 

 

K(u) =
1
2

1(|u|≤1)  

   

 

 
 
 

The new, smoothed data for the study. Most of 
the noise has been eliminated and patterns can be 
seen more clearly (From MRC, 1999) 
 

A uniform distribution 
(From Wikipedia, 2009) 
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Triangle  
 

 

K(u) = (1− | u |)1(|u|≤1)  
 
 
 
 
 
 
 
Epanechnikov 
 

 

K(u) =
3
4

(1− u2)1(|u|≤1)  

 
 
 
 
 
 
 
Quartic 
 

 

K(u) =
15
16

(1− u2)21(|u|≤1) 

 
 
 
 
 
 
 
 
Triweight 
 

 

K(u) =
35
32

(1− u2)31(|u|≤1)  

 
 
 
 
 
 
 
 

A triangular Distribution 
(From Wikipedia, 2009) 

An Epanechnikov 
Distribution   (From 
Wikipedia, 2009) 

A Quartic Distribution  
(From Wikipedia, 2009) 

A triweight Distribution 
(From Wikipedia, 2009) 



J.D. Ackerman 

24 

 

Guassian 
 

 

K(u) =
1
2π

e
−

1
2

u2

  

 
 
 
 
 
 
Cosine 
 

 

K(u) =
π
4

cos(π
2

u)1(|u|≤1)  

 
 
 
 
 
 
 
Spline Smoothing 

• The process of fitting a smooth curve to a set of noisy observations with a spline function 
 
Unlike the previous smoothing types, spline smoothing has 2 goals: 

1. To obtain a “smoother” set of observations 
2. To maintain proximity to the actual sample data points 

 
To accomplish goal number 2, a roughness penalty is defined. The smoothing spline estimate, 

 

ˆ µ , of 
the function is defined as a minimizer in the following formula: 
 

 

(Yi − ˆ µ (xi))
2 + λ ˆ µ ' '(x)2 dx∫

i=1

n

∑  

 
The first part of the formula is the sum-of-squares and the second part is the roughness penalty, which 
includes the smoothing parameter, λ. The smoothing parameter controls this created trade-off between 
proximity to the original data and roughness of the function estimate. Therefore, if λ = 0, no 
smoothing will occur, and if λ is approaching an infinitely high value (∞) the roughness penalty would 
be infinitely large and the estimate converges to a linear least-squares estimate. 
 
A typical sline used in statistics is the cubic spline, as this spline allows for easy formation of both first 
and second derivatives.  An example of a cubic spline would be; 

 

Si(x) = ai(x − xi)
3 + bi(x − xi)

2 + ci(x − xi) + di 

A Gaussian 
Distribution  (From 
Wikipedia, 2009) 

A Cosine Distribution 
(From Wikipedia, 
2009) 
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The first and second derivatives of this function would be; 
 

 

Si
' (x) = 3ai(x − xi)

2 + 2bi(x − xi) + ci  
 

 

Si
'' (x) = 6ai(x − xi) + 2bi  

 
 
Steps to fitting a Smoothing Spline Function 

1. Using the spline function, derive the 

 

ˆ µ (xi) values for all of the values 
2. From these calculated values, derive 

 

ˆ µ (x) for all x 
 
 
 
References 
 
*Anonymous. An introduction to Smoothing. MRC. August 19 1999.  Date Visited: Friday, January 9 
2009.  
 
http://imaging.mrc-cbu.cam.ac.uk/imaging/PrinciplesSmoothing 
 
 
**Anonymous. Kernel (statistics). Wikipedia. Date Visited: Friday, January 9 2009. 
 
http://en.wikipedia.org/wiki/Kernel_(statistics) 
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CHAPTER 4: PRIMER ON TEMPORAL AUTOCORRELATION 
Mike Janssen 

 
1. Recall Correlation? 
 
x    y   
x1  y1 
x2  y2     We want to know is x linearly associated with y, so a data point is created from 
x3  y3                each pair of (xi, yi) and we look for a trend. 
 
…  … 
 
the sample correlation coefficient is given by: 
 
 
 
 
 
Examples:  Mike’s Data on Marbled Murlets 

50.0

70.0

90.0

110.0

130.0

150.0

170.0

190.0

210.0

230.0

250.0

110 115 120 125 130

Wing (mm)

M
as

s 
(g

)

 

9.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

15.0 16.0 17.0 18.0 19.0 20.0

Tarsus (mm)

B
ill

 (m
m

)

 

r = 0.9  
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 n 
 ∑ (xi - x)(yi - y) 
  i=1 

 

         

r =  
 

   n                      n 
(∑ (xi - x)2∑ (yi - y)2)0.5 
  i=1                   i=1 
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2.  What is temporal autocorrelation?  

Synonyms: serial dependence, serial correlation 
 

Definition: Temporal autocorrelation occurs when the course of a time series is 
influenced by it’s recent past, or put another way:  when successive observations are 
correlated. 

 
Example:  Model Time Series 

0
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The temperature at any time (yt) is the result of the temperature in the previous hour (yt-

1) and a host of other meteorological variables.   
 
3. Why is it important? 
 Serial dependence violates the assumption of independence between observations, necessary to 
most of the statistics we are familiar with.  
 
Example:  
Comparing means: 
- A sample average will tend to drift away from the long run mean 
- values tend to be closer to each other than would be expected for  
independent observations. 
 
If our goal is to decompose a time series, we need to be able to account for the influence of 
autocorrelation before we can properly understand the influence of our explanatory variables.  
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4. Measuring Autocorrelation 
 
Consider a time series:   y1, y2, y3, y4….yn   or: 1,3,5,7….n 
    
y    yt+1  or:   y  yt+1    
y1  y2               1   3  
y2  y3                     3   5 
y3  y4                   5   7 
…  … 
 
 

 
 
r1 is the autocorrelation coefficient for a time series 
with lag of 1 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

yt

yt
+3

 

Y t

Y
 t

+1

We want to know whether xt is linearly associated with xt+1, 
so a data point is created from each pair of (xt, xt+1) and 
plotted. 

r1 = 0.9 

 n-1 
 ∑ (yt - y)(yt+1 - y) 
  t=1 

 

         

r1 =  
 

  n 
 ∑ (yt- y)2 
  t=1 

 

We can calculate the autocorrelation 
function for any lag ‘k’ using the equation:  rk =  

 
  n 
 ∑ (yt- y)2 
  t=1 

 

 n-k 
 ∑ (yt - y)(yt+k - y) 
  t=1 

 

         

Lag 1 

yt

y 
t+

2

Lag 2 Lag 3 

r2 = 0.5 
 

r3 = 0.1 
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5.  The Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) 
 
The autocorrelation coefficients can be plotted to create the autocorrelation function (or 
correlogram) 

-1
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Alternating series:  If successive observations lie on opposite sides of the mean then the ACF will 
alternate between negative and positive values. 
 
Trends: If a series has a trend (therefore not stationary) then values of rk will not come down to 
zero except for very large lag values 
 
Cyclical or Seasonal series:  If the data is cyclical, the ACF will also oscillate with similar frequency 
to the data series. 
 
White Noise:  If the observations are independent, then rk values will all be near  zero. 
 
But is the effect of r2 real, or is it the result of the influence of y0 on y1 and y1 on y2?  
 
Partial correlation refers to the autocorrelation present at a given lag while controlling for the 
autocorrelation at intermediate lags.   
Using the autocorrelation coefficients of lag 1 (r1) and lag2 (r2) we can calculate the partial 
autocorrelation coefficient of lag 2:  
 
 
    
 
 
 
 
 
 
 
 
 

Visual inspection of a correlogram can provide 
useful information about the nature of our data 
series. 

r2.1 =  
r2 – r1

2  

1 – r1
2  

We can plot the result to give the Partial 
Autocorrelation Function (PACF) 
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6.  Determining if autocorrelation is present (and significant) 
 
For a long series of white noise with n observations:  
 
 
 
 
 
 
 
 
 
 
 
- Data that goes for long “runs” away from the long term mean is likely autocorrelated.   
 
Another test of serial dependence is the runs test, for details see pp. 448 -450 in Ramsey and 
Shafer (2002). 
 
7.  Autoregression (AR) and the Moving Average (MA) model 
   

- Often a scientist will seek to create a mathematical model that “fits” observed data, or 
produces an output that matches well with observed data.   

- One can use an autoregressive scheme to incorporate serial dependence into a model.  
 
An example of a linear 1st order autoregressive scheme AR(1) is: 
 
 Yt - µ = α(Yt-1 - µ) + Zt 
 
Where:  
 µ  = series mean,  α = autoregressive parameter, Zt = random error term 
 
 

- Another way to incorporate serial dependence into a model is to use the moving average 
model. 

 
An example of a 1st order moving average model MA(1) is:   
 
 Yt – μ =  Ф1 Zt-1 + Zt 

  

Where:  
 µ  = series mean,  Ф1 = Moving average parameter, Zt = random error term at time t,  
Zt-1 = random error term at time t-1.  
 

rk

F
r
e
q
u
e
n
c
y

±2
√n 0

±2
√n

rk is normally distributed with mean 0 and 
variance of 1/n.  So in 95% of cases rk will lie 
between + 2/ √n .  Therefore, if rk is outside 
these boundaries, you can be 95% sure that 
you do not have white noise, and your data are 
not independent of each other.  
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Often an autoregressive scheme is used together with a moving average to create an ARMA 
model.     
 
Example: 
Combining an AR model of order p = 1 AR(1), and a MA model of order q = 1 MA(1), gives an 
ARMA(1,1) of:    
 
Yt – μ =  α(Yt-1 - µ) + Ф1 Zt-1 + Zt 
 
8. Autoregressive Integrated Moving Average Models (ARIMA) 
 

- ARMA models require a stationary time series 
- Often a time series can be differenced until it appears to be stationary 
- When this differencing gets incorporated into the ARMA, it becomes an ARIMA model 
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CHAPTER 5:  PRIMER ON SPECTRAL ANALYSIS 
Timothy J. Bartley 

 
 

I. What is Spectral Analysis? 
 

• A method of decomposing a time series into functions representing the underlying 
cyclical components of variable frequency and determine which periodic components 
contribute to the variance of the variable of interest 

• Tools like autocorrelation are used to test for serial dependence, but spectral analysis is 
used to quantify the underlying mathematical patterns 

• Accomplished by partitioning the variance between different cycle lengths 
• Also known as spectrum analysis 

 
II. Some Reminders 

§ 

 

 

y = c + asinω(t ± t0)  
 

 
Where: c is equivalent to the mean of the time series 

   a is equivalent to the amplitude 

   ωis equivalent to 

 

2π •  frequency or

 

2π
period

( because

 

f =
1
τ

 ) 

   t0 is equivalent to the phase (or lag) 
t is the counter of time through N observations 

 
• The general form for a periodic function is:  

§  
     

 

y = c + acos(ωt) + bsin(ωt)  
 

A mathematically convenient and simple 
representation of cycles, but other waveform 
functions can be used for these analyses 
 
The Fourier Theorem: a periodic function can 
be expressed as the sum of a series of sine and 
cosine terms. 

 
 
+__________________________________________ 

= 
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III. Some Considerations 
 

• Does the time series contain: 
o At least one full period(required for the following analyses) 
o Sufficient number of data points (a minimum of 50 is recommended) 
o A number of observations that is a multiple of the expected period (if this is 

known) 
o Variance in y (otherwise these analyses may not be useful) 
o A normal distribution in measurements (transforming the data may be required) 
o Outliers (these will interfere with the detection of periodicity) 
o Equally spaced time intervals (required for the following analyses) 
o Missing data points (these will need to be estimated) 
o Stationarity(required for the following analyses) 
o Trends (these must be removed before the following analyses) 
o Autocorrelation (to be sure a pattern exists in the data) 
o Frequencies expressed in radians (required for the following analyses) 

 
Synopsis: Before doing spectral analysis, examine your data.  

 
 

IV. Univariate (Single) Spectral Analyses 
 

a. Harmonic Analysis 
 

• Used if the period τis known a priori or from the literature 
• A type of regression analysis that estimates the mean, phase and amplitude 

 

 

Χ t = µ + acos(ωt) + bsin(ωt) + εt  for 

 

t = (0, 1, 2, . . . ,  N)  
 

Where: µ is the mean of the time series of X 

   ωis equivalent to 

 

2π ⋅ f  or

 

2π
τ

 

   εtare residuals uncorrelated with the periodic terms 
   t is the counter of time through N observations 
 

• Varying a and b varies the relative weight of the sine and cosine functions 
• The total amplitude (r) of the time series is: 

 

 

r = a2 + b2
 

 
• The mean and coefficients are estimated as follows: 
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µ =
1
N

⋅ Χ t
t=1

n

∑  

 

a =
2
N

(Χ t − Χ)cosωt
t=1

n

∑  

 

b =
2
N

(Χ t − Χ)sinωt
t=1

n

∑  

 
• To asses how well the period τ fits the observed data, calculate the expected values using 

that period and conduct an ordinary least squares regression, with R representing the 
goodness of fit of the model, and overall amplitude estimated with r 

• To test for the significance of the model, a test for white noise in the residuals is required, 
then the significance of the R2 can be tested 

 
Synopsis: Harmonic analysis estimates the parameters of an underlying periodic function when 
the period is known. 

 
 

b. Periodogram Analysis 
 

• An expansion of harmonic analysis for a series of periods  
• Used when there is no known period 
• Related to ANOVA 
• Used to estimate which frequencies account for a large percentage of variance in the 

variable of interest 
 

1. Divides the time series of length N into  

 

N
2

 sinusoidal waveforms  

with cycle length

 

N
1

 ,

 

N
2

, 

 

N
3

, . . . , 

 

N
N

2
 (or 2) 

 
 
 
 
 
 
 
 

Period = α   Period = α/2   Period = α/3 
 
 
 
 
 
 
 
 

Period = α/4    Period=α/5 
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2. For each of the 

 

N
2

 cyclic components, a and b coefficients are calculated as follows: 

For: 

 

Χ t = µ + (ak cosωk,t + bk sinωk,t )
k

∑  

 

 

µ =
1
N

⋅ Χ t
t=1

n

∑   

 

a =
2
N

(Χ t − Χ)cosωkt
t=1

n

∑  

 

b =
2
N

(Χ t − Χ)sinωkt
t=1

n

∑  

 
 

Where: µ is the mean of the time series of X 

   ωis 

 

2πk
N

 for 

 

k =1, 2, 3, . . . ,  N
2

 (N must be even) 

   t is the counter of time through N observations 
    
 

3. The periodogram ordinate, or Sk (the sum of squares accounted for by each of the  

 

N
2

 

periodic components) is calculated: 
 

 

Sk =
N
2

⋅ (ak
2 + bk

2) 

 
• The sum of all periodogram ordinates equals the total Sum of Squares: 

 

 

Sk =
1
N

(Χ t − Χ)2

t=1

N

∑
k

∑ = σ x
2  

 
• Sometimes expressed as a percentage of the total Sum of Squares 

 
 

 
 
 

 
 
 

 

  
 

      
 

 
 

Total Sum of Squares 

SS 

 

N
1

 
SS 

 

N
2

 
SS 

 

N
3

 SS 

 

N
N

2
 . . . . . 
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SUM= SStotal   SUM=100% 
4. Graph the results 

  
a)               b) 

value         value 
 
 
 

 
 
 
 
 

Frequency     Frequency 
 

• Peaks at frequencies that explain large amounts of variation (see ‘a’) 
• To test for the significance, conduct a Fisher test for each peak to get a CI 
• If the variability is due to white noise, the line will be flat (see ‘b’) 
• Watch out for leakage 
• Compare to the original series to be sure that the result makes sense 

 
 
§      § 
 
 
 
 
 

 

example time series… ⇒  …and their spectra 
Synopsis: A periodogram shows you how much variance in your variable of interest is 
accounted foreach of a number functions of varying frequencies. 

Time  Variable X Periodτ Frequencyf PDG ValueSk PercentageSk/ΣS 
1 x - 0 0 0 
2 x 10 0.1 3 0.027522936 
3 x 5 0.2 76 0.697247706 
4 x 3.33 0.3 10 0.091743119 
5 x 2.5 0.4 7 0.064220183 
6 x 2 0.5 13 0.119266055 
7 x - - - - 
7 x - - - - 
9 x - - - - 

10 x - - - - 
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c. Power Spectra 
 

• Periodograms are susceptible to sampling errors, so smoothing is used on 
periodogram ordinate values 

• However, this smoothing might make detecting the role of distinct periodic 
components more difficult 

• A periodogram with smoothed values is known as a power spectrum 
• Typically expressed as ‘power density’ or ‘spectral density’, which is calculated by 

dividing each spectral estimate by the overall power 
• Power spectra are tested for significance using a confidence intervals and a χ2 

distribution 
 
     

 
value     density 

⇒ 
 
Periodogram     Power Spectrum 

 
 
Synopsis: A power spectrum is a periodogram with smoothed values. 

 
 

V. Bivariate/Multivariate Spectral Analyses 
 

• These analyses are used to compare two variables measured concurrently 
• Two time series may correlate in their trends, cycles, residuals or any combination of the 

three 
• One could use a simple Pearson’s correlation, but there are many statistical issues with 

this analysis including serial dependence, spurious correlations between time series and 
lagged correlations 

 
a. Cross-Spectral Analysis 

 
• Starts by conducting univariate spectral analysis for each time series 
• Examines the correlation between time series for each frequency and the lag between 

time series 
 
Synopsis: Multivariate spectral analyses allow the comparison of concurrently measured 
variables from time series for which univariate spectral analysis has already been conducted. 
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VI. Summary 

 

     §  Variance for

 

k
N

 

 

 §    §  Variance for

 

k
N

 

 

§  Variance for

 

k
N

 

 
time series        spectrum 
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Chapter 6 : Primer on WAVELET ANALYSIS 
Mark D’Aguiar 

 
Wavelet Analysis: decomposing a time series into time-frequency space. 
 
A Wavelet:   The term wavelet means a small wave . The smallness refers to the condition that 
this (window) function is of finite length (compactly supported). The wave refers to the 
condition that this function is oscillatory .  

• The mother wavelet is a prototype for generating the other window functions.  
• a mathematical function used to divide a given function or continuous-time signal 

 into different scale components.   
• The wavelets are scaled and translated copies (known as "daughter wavelets") of a 

finite-length or fast-decaying oscillating waveform (known as the "mother wavelet"). 
• Must have a mean of zero. 

 
Wavelet Transform:  is the representation of a function by wavelets.  
-Wavelet transforms are classified into discrete wavelet transforms (DWTs) and continuous 
wavelet transforms (CWTs). 
Examples of wavelets (mother wavelets): 

 
 
 
 
 
 
  
 

   
Morlet wavelet:  

  

Mexican Hat:  Continuous 

 

  
Time  Time  

Scale  

NOTE: An admissibility condition must be satisfied; satisfied as long as  
 

 

http://en.wikipedia.org/wiki/Continuous_signal�
http://en.wikipedia.org/wiki/Scaling_(geometry)�
http://en.wikipedia.org/wiki/Translation_(geometry)�
http://en.wikipedia.org/wiki/Discrete_wavelet_transform�
http://en.wikipedia.org/wiki/Continuous_wavelet_transform�
http://en.wikipedia.org/wiki/Continuous_wavelet_transform�
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Why Transform?  Transformations are applied to time series (signals)  to obtain  further 
information from that signal that is not readily available in the raw signal.  

• The parameters of’ scale’ and ‘translation’ make it possible to ZOOM IN on the transient 
behavior of a signal. I.e. parameters make it possible to  analyze  the behavior of a signal 
at a dense set of time locations and with respect to a large range of scales 

 

Wavelet Analysis: 

Recall: 

Spectral analysis  

• Decomposes a signal into its harmonic component based on the Fourier analysis. Which is 
regarded as the partition of the Variance of the series in its different oscillating 
components with different frequencies (periods).   

• Peaks in the ‘periodogram’ indicated which frequencies are contributing the most to the 
variance of the series. 

• Spectral and Fourier analysis can determine all spectral components in a signal, but does 
not provide any information to when they are present. 

 

Assumption: statistical properties of the time series do NOT vary with time (AKA stationary). 

 

Wavelets: 

•  Wavelet analysis is similar to Fourier analysis in the sense that it breaks a signal down 
into its constituent parts for analysis.  

• The wavelet transform breaks the signal into its "wavelets", scaled and shifted versions of 
the "mother wavelet".  

•  It is these properties of being irregular in shape and compactly supported that make 
wavelets an ideal tool for analyzing signals of a non-stationary nature.  

• Their irregular shape lends them to analyzing signals with discontinuity's or sharp 
changes, while their compactly supported nature enables temporal localization of a 
signals features. 

Performs local time-scale decompositions of the signal = estimation of its spectral 
characteristics in time.  

Advantages of Wavelet Analysis: 

1. Wavelet analysis overcomes the problems of non-stationarity in time series by 
performing a local time-scale decomposition of the signal, i.e., the estimation of its 
spectral characteristics as a function of time. Through this approach one can track how 
the different scales related to the periodic components of the signal change over time. 
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2.  Wavelet analysis permits analysis of the relationships between two signals, and it is especially 
appropriate for following gradual change in forcing by exogenous variables. 

General Summary of Fourier vs. wavelets 

If you are not interested in at what times these frequency components occur, but only 
interested in what frequency components exist in a signal, then FT can be a suitable tool to use.  

Fourier transform (FT) assumes stationary. i.e frequencies present at all time intervals 

• STFT assumes small time intervals of stationary, and is basically the FT multiplied by a 
‘Window Function’ ‘w’.  

 
     Short term Fourier Transport    Discrete Wavelet Transform 

 

Figure: Comparison of STFT with Discrete Wavelet Transform- 

• Windowed Fourier transform of fixed time and frequency resolution. 

• The wavelet transform offers superior temporal resolution of the high frequency 
components and scale (frequency) resolution of the low frequency components.  

This is often beneficial as it allows the low frequency components, which usually give a signal its 
main characteristics or identity, to be distinguished from one another in terms of their frequency 
content, while providing an excellent temporal resolution for the high frequency components 
which add to the signal. 
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In Fourier basis, the basis functions are harmonic multiples  

 
                                                                        Figure: Fourier basis  

In Wavelets, the basis functions are scaled and translated versions of a "mother wavelet" ψ(t). Where ‘j’ is the scale 
coefficient, and ‘k’ is the ‘translation’ (or shift) coefficient. 

 

 

Fourier series  
Gives frequency information. Basis functions 
last the entire interval.  
 

Wavelets 
 Wavelet basis functions give frequency info 
but are local in time. 

 
 

Figure: Fourier basis functions Figure : Wavelet basis functions 

http://cnx.org/content/m10437/latest/�
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Continuous wavelet approach 

The wavelet transform decomposes signals over dilated and translated functions called “mother 
wavelets” φ(t) that can be expressed as the function of two parameters, one for the time position 
(τ), and the other for the scale of the wavelets (a). More explicitly, wavelets are defined as  

 
 

The wavelet transform of a time series x(t) with respect to a chosen mother wavelet is 
performed as follow:  

 
 

 

where * denotes the complex conjugate form. The wavelet coefficients, W x (a,τ), represent the 
contribution of the scales (the a values) to the signal at different time positions (the τ values).  

The wavelet transform can be thought as a cross-correlation of a signal x(t) with a set of 
wavelets of various “widths” or “scales” a, at different time positions τ.  

 

Figure: Haar Wavelet 



J.D. Ackerman 

44 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Discrete Wavelet transform 
The continuous wavelet transform was computed by changing the scale of the analysis window, 
shifting the window in time, multiplying by the signal, and integrating over all times.  

Discrete Wavelets:  filters of 
different cutoff frequencies are used 
to analyze the signal at different 
scales. The signal is passed through a 
series of high pass filters to analyze 
the high frequencies, and it is passed 
through a series of low pass filters to 
analyze the low frequencies. 
 
 
 
 
 
 
 
 

 
 
 
 

Subsampling a signal 
Corresponds to reducing the 
sampling rate, or removing 
some of the samples of the 
signal.  

i.e.  subsampling by two 
refers to dropping every 
other sample of the signal.  

Subsampling by a factor n 
reduces the number of 
samples in the signal n times. 

 

Wavelet analysis: (a-c) form 
of Morlet wavelet as a 
function of parameters ‘a’ for 
τ = 0:  Real and imaginary 
parts of wavelet. 
d) Morlet is superimposed 
and moved across the signal 
at different time positions 
(τ1τ2τ3) etc. 
e) the fit of the morlet is 
plotted as a two dimensional 
plot.  
τ1 = match of wavelet is 
high, thus high R(Wx) value. 
τ 2 = weak match thus low 
R(Wx) value. 
τ3 = perfect opposition, thus 
high negative R(Wx) value. 
Where R is the Real part of 
wavelet. 
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• A DWT is non-redundant. 

• The number of blocks of wavelet power at each scale is a function of non-overlapping 
wavelet width.  

• In a typical DWT, frequencies are spaced at unit powers of two and the count of blocks in 
time will increase by unit powers of two as these fixed frequencies increase.  

•  the DWT is fast and its time-frequency representation of a signal requires only modest 
memory, it is not practical for time-frequency spectral analysis 

 
Choice of the mother wavelet: 

 There are several considerations in making the choice of a wavelet, for example; 

1. real versus complex wavelets:  Complex returns phase information, a real only power, 
but is useful in pinpointing peak frequency. 

2. continuous or discrete wavelets: Continuous = redundant decomposition but more 
robust to noise. Discrete = fast implementation but number of scales at the time interval 
depend on data length. 

• If information about phase interactions b/w 2 series- continuous and complex (Morlet, 
Mexican hat). 

3. Wide vs. narrow:  It’s a trade off.  A wide wavelet function will give good frequency 
resolution at the loss of time resolution, while a narrow wavelet function will yield good 
time resolution and poor frequency resolutions. 

4. Shape: Reflect the type of feature in the time series. Records with sharp jumps of sets 
should use a box-car like Haar, while smooth use Morlet or cosine type function. 

 

Wavelet Power spectrum: 

• Allows quantification of the main periodic component of a given time series and its 
evolution through time. 

 

Local Wavelet Power spectrum:  

 Computed by first taking a discrete Fourier transform of the time series 

    Sx(f,τ) = ||Wx(f,τ)||2 

The Fourier spectrum of a signal can be compared with the global wavelet power spectrum. 
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Global Wavelet Power Spectrum:  

 The averaged variance contained in all wavelet coefficients of the same frequency  f:  

__     T 

Sx (f) =  σx2   ∫ ||Wx (f,τ)||2 dτ  

         T    0 

   

Mean Variance at each time location: 

 Obtained by averaging the frequency components: 

  Sx (τ)=  

  

 

Wavelet Coherency and Phase Difference: 

• Used to measure the direct correlation between the spectra of two non stationary time 
series. i.e . Quantify statistical relationships between 2 non stationary signals.  

• In Fourier, the coherency is used to determine the association between x(t) and y(t). 

• The wavelet coherence Rx,y(f,τ), is equal to 1 when there is a perfect linear relation at a 
particular time location and frequency between the two signals x(t) and y (t) respectively. 

 

Zero padding and cone of influence: 

• An artificial increase in the length of the time series  to the next higher power of two by 
adding zero-value samples.  

•  helps to avoid false ‘wrap around’ periodic events. 

 Disadvantage: as wavelet gets closer to the edge of the time series, part of it will exceed 
the edge, and thus artificially decreasing the value of 
the wavelet transform.  

 Cone of influence = zone where the ‘edge’ 
effects are present. 

 

Criteria for applying Wavelet analysis 

1. Minimum  time series with at  least  30-40 data 
points with periodic components  smaller than 
20-25% of the series length. 

Where: 
σx

2is the variance of the time 
series x and T is the duration of the 
time series 

Where Cg =  
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Statistical Significance: 

1. Is the spectra observed at  a particular position on the time scale due to random 
processes.  

2. Determine background spectra – white noise or red noise(i.e. bootstrapping) 

 

To compute the wavelet transform for a time series are thus:  

1. Choose a mother wavelet,  

2. Find the Fourier transform of the mother wavelet,  

3. Find the Fourier transform of the time series,  

4. Choose a minimum scale α0,  

5. For each scale, do:  

o Using the equation appropriate for your mother wavelet),  

o Compute the daughter wavelet at that scale;  

o Normalize the daughter wavelet by dividing by the square-root of the total wavelet 
variance (the total of (ψ)2 should then be 1, thus preserving the variance of the 
time series);  

o Multiply by the FT of your time series;  

o Inverse transform back to real space;  

 

6. Make a contour plot.  

7. Define confidence limits based on auto-regressive red or white noise. 

 

References: 

Torrence, C.  and  .P Compo (1998). A practical guide to Wavelet Analysis. Bulletin of the 
American Meteorological Society.  

Cazelles, B., Chavez, M., Berteaux, D., Menard, F., Olav, Vik., Jenourier, S., and N. Stenseth. (2008). 
Wavelet analysis of ecological time series. Oecologia. 156: 287 -304 

Anonymous. A Really Friendly Guide to Wavelets . (2004) http://pagesperso-
orange.fr/polyvalens/clemens/wavelets/wavelets.html#eq2 
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PRIMER ON COHERENCE ANALYSIS 
Gale Bravener 

 
Let’s start with a data set with two variables (2 different time series) 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Statsoft website) 
 
Some analyses we have are now capable of doing with these time series: 
 

Smoothing Spectral Analysis 
Correlation Cross-Correlation 
Regression Cross-Spectral Analysis 
Auto-Correlation Wavelet Analysis 

 
Spectral Analyses: 
 

• Spectral analyses (Periodogram / Power 
spectrum) decompose a complex time 
series into a few underlying periodic (sine 
and cosine) functions, to uncover one or 
more recurring cycles of different lengths, 
which at first may have just looked like 
random noise.  

  

time VAR1 VAR2 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1.000 
1.637 
1.148 
-.058 
-.713 
-.383 
.006 
-.483 
-1.441 
-1.637 
-.707 
.331 
.441 
-.058 
-.006 
.924 

-.058 
-.713 
-.383 
.006 
-.483 
-1.441 
-1.637 
-.707 
.331 
.441 
-.058 
-.006 
.924 
1.713 
1.365 
.266 
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Cross-spectrum (X and Y)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0.0
62

5
0.1

25

0.1
87

5
0.2

5

0.3
12

5
0.3

75

0.4
37

5

Frequency

lo
g(

G
xy

)

• The purpose of spectral analysis is to identify cycles of different lengths, rather than using 
the length of the seasonal component which is known a priori and then including it in 
some theoretical model of moving averages or autocorrelations (ARMA). 

 
Spectral Analysis (univariate) 
(Using our example data from page 1) 
 

Periodogram for each time series (var1 and 
var2) 

 
Cross-Spectral Analysis (multivariate) 
 

• Used for two or more time series with concurrently measured variables 
• Purpose is to uncover potential correlation, and lag, between two time series 
• The cross-spectral density function of two sets of random data evolves directly from the 

cross-correlation function. 
 

Cross-periodogram of the two time series 

 
 

These are some of the values from the cross-spectral analysis (from Statsoft website). 
 
 
 

Spectral Analysis results:     

Frequency Period 
Cosine 
Effects 

Sine 
Effects 

X 
density 

Y 
density 

0  0 0 0 0.024 
0.0625 16 1.006 0.028 8.095 7.798 
0.125 8 0.033 0.079 0.059 0.101 
0.1875 5.33 0.374 0.559 3.617 3.845 
0.25 4 -0.144 -0.144 0.333 0.278 
0.3125 3.2 -0.089 -0.06 0.092 0.067 
0.375 2.67 -0.075 -0.031 0.053 0.036 
0.4375 2.29 -0.07 -0.014 0.04 0.026 
0.5 2 -0.068 0 0.037 0 

Cross spectral analysis results :  

Frequency Period 
Cross-
Density 

Cross-
Quadrature 

Cross-
Amplitude 

  Cxy(f) Qxy(f) │Gxy(f)│ 
0  0.000 0.000 0.000 
0.0625 16 2.356 -7.588 7.945 
0.125 8 -0.048 0.061 0.077 
0.1875 5.33 -2.926 2.312 3.729 
0.25 4 -0.269 0.142 0.305 
0.3125 3.2 -0.074 0.026 0.079 
0.375 2.66 -0.043 0.009 0.044 
0.4375 2.285 -0.033 0.003 0.033 
0.5 2 0.000 0.000 0.000 
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BACKGROUND 
Cross Spectral Analysis 
 
1.  Cross spectral density function is calculated as:  
 

Gxy(f) = Cxy(f) –  i Qxy(f) 
 
Where i (sometimes called j) = √-1. 
 
Unlike the power spectrum, the cross-spectrum is complex valued (consists of a real and an 
imaginary part) as it contains amplitude and phase information.  
 

• The real part of the cross-spectrum, Cxy(f),  is known as the cross-density (coincident 
spectrum, co-spectrum, or coincident spectral density function).  It gives the in-phase 
correlation at a given frequency between two series.   

 
• The complex (or imaginary) part of the cross-spectrum is known as the quadrature 

spectrum (quad-spectrum, or cross-quadrature spectral density).  It gives the correlation at 
a given frequency between the two series where the time axis of one has been shifted by a 
quarter of a wavelength. As an example, the sine and cosine functions are in perfect 
quadrature (Platt and Denman 1975). 

 
2.  Cross spectral density function can also be expressed as: 
 

Gxy(f) = │Gxy(f)│e-j θxy(f) 
 
Where the magnitude (or cross-amplitude), │Gxy(f)│and the phase angle (or phase shift or phase 
spectrum), θxy(f) are related to Cxy(f) and Qxy(f) by: 
 
 

│Gxy(f)│= √ Cxy(f)2 + Qxy(f)2          and                     θxy(f) = tan-1 [Qxy(f) / Cxy(f)] 

 
 
 
Cross-amplitude,│Gxy(f)│can be interpreted as a 
measure of covariance between the respective 
frequency components in the two series at f.  We can 
conclude from the results shown in the table 
above that the .0625 and .1875 frequency 
components in the two series covary.  
 
The phase angle (phase shift), θxy(f) estimates are 
measures of the extent to which each frequency component of one series leads the other.  
 

 



Spatial and Temporal Analysis in Ecology: A Primer 

51 

 

COHERENCE  (aka: coherency, squared coherence, squared coherency, coherence function) 
 
When applying cross-spectral density information to physical problems, it is often desirable to 
use a real-valued quantity, given by the coherence. 
 
 
γ2xy(f)  =      │Gxy(f)│ 2 
       Gxx(f) Gyy(f)                         0  ≥  γ2xy(f) ≤   1 
       
Where f is the frequency, Gxy is the cross spectrum density of x(t) and  y(t), Gxx is the power (or 
auto) spectrum of x(t) and Gyy is the power (or auto) spectrum of y(t) (Bendat and Piersol 1971). 
 
What does it tell us? 
 
Coherence indicates how well x corresponds to y at each frequency.  It is analogous to the 
coefficient of determination (R2) in simple correlation (Harris 1967).  “The coherence function is 
a quantitative measure of the linear correlation between two random variables” (Loewen et al. 
2007).   
 

• When γ 2xy (f) is near 0 at a particular frequency, x(t) and y(t) are said to be incoherent at 
that frequency, which simply means they are uncorrelated. 

 
• When γ 2xy(f) is near 1 x(t) and y(t) are said to be fully coherent. 

 
• If γ 2xy(f) is between one and zero, there may be extraneous noise present in the 

measurements, the system relating x(t) and y(t) is not linear and/or y(t)  is an output due 
to an input x(t)  as well as other inputs. 

 
 
Important to note:  The coherence is non-negative (between 0 and 1) because it measures the 
correlation between aligned frequency components.   
 
For example, if x(t) shows a strong pattern of alternating positive and negative values and y(t) 
equals approximately -x(t), then processes x(t) and y(t) will be strongly coherent but out of phase 
(Bendat & Piersol 1971). 
 
Phase is measured by the phase spectrum, θxy(f)  
 
Time Delay Application: 
 
It is the slope of the phase spectrum that corresponds to the delay between x(t) and y(t).   
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For example, a slope of 3.01 may suggest that series x(t) leads y(t) by 3.01 units (eg. 3 years).  
However, because of the inverse tangent (tan-1), the phase angle is between π and –π and it is 
liable to produce discontinuities in the phase spectrum.  This could affect our interpretation of 
the slope. 
 
Note: lag for example data should be 3 years.  Slope of linear trendline for phase angle = 3.01.  So 
in this case, the phase angle does very well at estimating the time delay. 
 
Dr. Mark Loewen (U of Alberta) suggests that in some cases, a better method to determine time 
delays is to plot the cross-correlation function, or cross-correlogram, which is calculated to 
incorporate a lag of k, as: 

rxy(k) = gxy(k)/√(gxx(0)gyy(0)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADVANCED TOPICS 
 
Wavelet Coherence: 

• Along with the wavelet cross-spectrum and phase spectrum, coherence is calculated for 
the same applications and using the same equations used as those described above.  Used 
to quantify the relationships between two non-stationary signals (Cazelles et al. 2008, 
Rouyer et al. 2008 – see Feb. 23 readings).  
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• Equal to 1.0 when there is a perfect linear relation at a particular time location and 
frequency between the two signals.  

 
Partial Coherence Functions: 

• For multiple input, single output systems 
• Used to reveal the existence of a linear relationship between ∆x1(t) and ∆y(t) even when 

such a relationship is not apparent from the ordinary coherence function between x1(t) 
and y(t) 

 
Calculated as:  γ21y(f)  =    │S1y(f)│ 2 
             G11(f) Gyy(f)                         0  ≥  γ21y(f) ≤   1 
 
Example: 
If we assume that coherence between x1(t) and 
y(t) =1, we may be inclined to believe there is a 
linear relationship between these two variable.  
But if there is a third variable, x2(t), which is 
highly coherent with x1(t).  In this case, the high 
coherence between x1(t) and y(t) might only be 
a reflection of the fact that x2(t) is highly 
coherent with x1(t)  and x2(t) is related via a 
linear system to y(t).  If the partial coherence is 
computed between x1(t) and y(t), it might turn 
out to be a very small number near zero. 
 
Multiple Coherence Functions 

• Combines ordinary coherence and partial coherence.   
• Used for multiple inputs and one output.   

For example, a two-input single-output linear model was used in Loewen et al. (2007) to 
investigate the coherence between water level and wind speed (two inputs) and water current 
(one output). 
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Wiley & Sons, Inc. New York.   
Diggle, P.J.  1990.  Time Series: A Biostatistical Introduction.  Clarendon Press, Oxford. 
Harris, B.  1967.  Spectral Analysis of Time Series.  John Wiley and Sons, Inc. 
Loewen, M. R., Ackerman, J. D., Hamblin, P.F. 2007.  Environmental  implications of stratification 

and turbulent mixing in a shallow lake basin.  Can. J. Fish. Aquat. Sci. 64: 43-57. 
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Priestley, M.B. 1981.  Spectral Analysis and Time Series Volume 2.  Multivariate Series, 
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CHAPTER 8: PRIMER ON SPATIAL DISTRIBUTION 
Justin Sheehy 

 
A distribution (or set of geographic observations) representing a particular phenomenon or 
characteristic across a landscape or location.  
 
 
There are three spatial distributions that are typically considered: 
 
 

1. Random 
2. Uniform or Regular 
3. Aggregated or Clumped 

 
 
Random Distribution  
 
For a distribution to be considered random, it must satisfy two conditions: 

1. Condition of equal probability – any point has an equal probability of occurring at any 
position on the plane.  

 
2. Condition of Independence – The 

position of any point on the plane is 
independent of the position of any 
other point 

 
- Tend to be modeled/represented with 

a Poisson distribution, equal mean and 
variance. 

- If N points are located randomly in a 
region, then the probability that a 
point falls within a particular 
subdivision of area A can be seen as an 
event which occurs with probability 
λA, where λ is the density.  

- Not common pattern amongst animal 
populations  

- Very common amongst wind 
dispersed plant populations (i.e. Dandelions) 
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Uniform/Regular Distribution 
 

- A geographical distribution in which each member has its own space and all members are 
approximately the same distance away 
from their nearest neighbour 

- Tend to be modeled/represented with 
a binomial distribution 

- Very common amongst bird 
populations, especially during breeding 
season 

- Attack patterns of Wood Beetle on 
Norway Spruce Logs (Byers 1984) 

- I.e. Nesting birds on the beach will be at 
uniform distances from one another 

o Distance tends to equal neck 
reach of bird 

 
- In Areas of High Predation, can be the 

safest pattern strategy for nesting 
o Upland thicket hens (Picman 

1988) 
 
 
 
Aggregated or Clumped Distribution 
 
A geographical distribution where individuals 
occur in clusters  
- Too dense to be explained by chance 
- Correlated to environmental 

heterogeneity/ availability of resources 
- Most common pattern amongst animals in 

stochastic environments 
- Tends to have a negative binomial 

distribution 
- I.e. Wolves travelling in packs 
- Defense Mechanism against predators 
- Tend to be modeled/represented with a 

Negative Binomial Distribution 
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Quadrat Analysis 
- A planar study region is divided into a grid 

with cells of equal size (quadrats) 
- Number of points in each cell, or in randomly 

selected cells, is recorded 
- Quadrats are typically square in shape 
- Tries to determine if the distribution of an 

area is random or nonrandom  
- Null hypothesis, H0, is typically random 

distribution 
 
Therefore, if observed frequency distribution 
does not conform to one expected from a 
random point process: 

- Reject null hypothesis (randomness) 
- Accept alternative hypothesis 

o Either regular or clustered, depending on direction the observed values differ from 
those expected 

 
Variance-Mean Ratio (VMR) 

- In Poisson Distribution, variance = mean, variance/mean = 1 
- Observed point distributions may be measured for their difference from the expected 

Poisson realizations by testing the significance of the difference between the observed 
ratio and 1.  

- The difference has a standard error of 

 

2
N −1 , where N is number of observations and N-

1 df 

- The test statistic 

 

(t*) =
Observed − Expected

SE , Expected value is 1 
- VMR > 1  = more clustered than random 
- VMR < 1 = more regular than random 

 
For Example, if you had an area with (N=50) animals, and measure the mean number of animals 
per quadrat (µ) and variance between quadrats for the area, you can determine the approximate 
distribution of the population.  
 

 
 
 
 
 
 
 

Uniform/Regular Random Clustered 
Mean (µ) = 0.500 µ = 0.500 µ = 0.500 
Variance (δ2) = 0.241 δ2= 0.497 (δ2) = 27.00 
VMR = 0.482 VMR = 0.994 VMR = 54 

 

 

t* =
0.482 −1
0.2041

= −2.538
 

 

t* =
0.994 −1
0.2041

= −0.030
 

 

t* =
54 −1
0.2041

= 259.65
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Following calculations, use a one-sided T-test with N-1 df to determine if significant 
 
 
Chi Square (Or Goodness of Fit) Test 
- Another method for measuring the difference between observed and expected (typically 

random) distributions.  
- Similar to VMR, but uses only expected and observed values 
 
 
Steps for Chi square test 
 

1. Estimate population mean of the Poisson distribution is: 

 

m = λa , where λ is the 
population density, and a is the quadrat area, with a sample mean:

 

ˆ m = u  
 

2. Calculate the expected frequencies: 

 

NP(r) = N exp(− ˆ m )
ˆ m r

r!  (r = 0,1,2,3…), where  r is the 
number of points per quadrat. 

 

3. Test for difference using: 

 

X 2 =
[Observed − Expected]2

Expectedi= 0

N

∑
 

 

         

 

X 2 =
[ f r − NP(r)]2

NP(r)r= 0

w

∑
 

 
 
 
4. Check chi square table for significance, using N-1 df.  If significant, reject null hypothesis.  

 
 
Number of Observed Frequencies Expected frequency with  
points per quadrat Uniform/ 

Regular 
Random Clustered Poisson model (λa = 0.500) 

0 25 30 44 30.32 
1 25 16 2 15.16 
2 0 3 0 3.79 
3+ 0 1 4 0.730 
N= 50 50 50 50.00 
X249 7.3203 0.3145 36.039  
P0.05 0.0003 0.76 0.000002  
 
 



J.D. Ackerman 

58 

 

 
Nearest Neighbour Analysis 
- Measures the difference between an observed spatial point pattern and randomness 
- Uses the distribution, in a random point pattern, of the distance between a point and its 

closest neighbouring point 
 
Steps for Nearest Neighbour 

1. Measure the distances between points and nearest neighbours 
 

2. Calculate mean distance, using: 

 

d = 1
N

di
i=1

N

∑
 

 

3. Calculate the mean of the normal distribution, using: 

 

E(d ) =
1

2λ1/ 2  
 

4. Calculate variance of distribution, using: 

 

var(d ) =
4 − π
4λπN  

 

5. Calculate test statistic (

 

φ), using: 

 

φ =
d − E(d )

var(d )  
 
 

Note: There is another index suggested: 

 

D* =
d 

E(d )  
 
 
 
In this index, a perfectly uniform pattern leads to a D* value of 2.14191, a random pattern leads 
to a D* value of 1, and a clustered patter leads to a D* value of 0 
 
In the following table,  
 

 

E(d ) =
1

2 (50 10000)
= 7.071

 
 

 

var(d ) =
4 − π

4(50 10000)π (50)
= 0.273
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d  

 

D*  

 

φ  
 
Perfectly regular 
(uniform) 

 
15.00 

 
2.12 
 

 

15.00 − 7.071
0.5227

=15.17
 

 
Random 
 

7.59 1.07 

 

7.59 − 7.071
0.5227

= 0.993
 

 
Perfectly 
clustered 
 

 
0.00 

 
0.00 

 

0 − 7.071
0.5227

= −13.53
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CHAPTER 9: PRIMER ON USE OF INDICES TO 
DETERMINE SPATIAL PATTERNS 

Michael Janssen 
 
Introduction 
Spatial indices are used to provide an indication of spatial pattern. 
Note: An “index” does not represent a real quantity, and is therefore different from a “measure”     
 
Spatial indices can be used to: 

1. Describe a spatial pattern at a given location 
2. Indicate relationships within spatial data e.g. autocorrelation 
3. Indicate spatial association between individuals or groups 

 
Review – Basic spatial patterns: 
 

Uniform 
Synonyms:  regular, even, negative contagion, under-dispersed 
 
 
Aggregated  
Synonyms:  clumped, patchy, contagious, positive contagion, over-
dispersed 
 
 
Random  
 
 
 

 
1. Statistics describing spatial patterns at a given time and place- Indices of Dispersion 
 
• Indices of dispersion are used to measure the distribution of organisms across a landscape.  
• The type if index used depends on how the spatial data were collected 

 
 
Spatial patterns can be inferred from data that: 

• was collected using sampling quadrats 
• includes the entire population accurately plotted on a map 
• includes only a sample of individuals plotted over 2 dimensional space 
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Indices of dispersion for quadrat counts 
Quadrat count data:  A series of counts of individual organisms in quadrats of constant size and 
shape are taken.  Quadrats can be randomly sampled from the area of interest, sampled side by 
side (“contiguous quadrats”), or placed so the entire area is sampled.   
 
Consider the quadrats:   
    

x = 4 
n = 9 
s2 = 4 
∑ (x) = 38 
 

 
Variance-to-mean ratio (VMR):   
  
 VMR = s2/ x  For details, and hypothesis testing, see Justin’s primer  
 
Green’s coefficient (Cx): 
 
   
 
 
*Unfortunately the sampling distribution has not been worked out, so it is difficult to assign 
confidence intervals 
 
Morisita’s Index of dispersion (Id): 
 

    
 
 
Ho = Random distribution        χ2 = Id (∑x -1) + n - ∑x d.f. = n -1 
 
Standardized Morisita Index (Ip ):  
- standardized so it fits on a scale of -1 to +1 
 
- 1st calculate Id 
- Then calculate 2 critical values from the Morisita Index 
 
  Uniform Index  =  
 
where χ2.975 = Chi Square from table with d.f. = n – 1 that has 97.5% of area to the right 
 
Clumped Index =    
 
where χ2.025 = Chi Square from table with d.f. = n – 1 that has 2.5% of area to the right 

2 6 6 

2 6 6 

2 4 4 

Cx =
 s

2

x – 1

Σ(x) – 1

Id =  n


 Σ(x2) –  Σx

(Σx)2 – Σx 



Mu =  χ
2

.975 –  n +  Σx
(Σx) – 1

Mc =  χ
2

.025 –  n + Σx
(Σx) –  1

A good index of dispersion: 
- moves in a smooth manner from uniform-random-
aggregated 
- is not affected by n or mean frequencies 
- has a known sampling distribution so CI’s can applied and 
significance tested. 
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A 

B 

C 

Standardized Morisita Index (Ip ) cont…  
Then calculate the standardized Morisita Index using one of the following: 
 
When Id > Mc > 1.0,          
 
 
When Mc > Id > 1.0,     
 
 
When 1.0 > Id > Mu,   
 
 
When 1.0 > Mu > Id,      
 
 
The Scale Problem:  
 
    
 
 
 
 

 
 
 
 
 
 

 
 
Spatial Pattern from Distance Methods: 
Data is often collected such that we have 2 kinds of measurements: 
 
• Distance from random points to the nearest organism (xi) 
• Distance from a random organism to it’s nearest neighbor (ri) 

 
   
 

h = Hopkin’s test for randomness 
 
under Ho of randomness h is F distributed with d.f. = 2n in numerator and denominator  
 
An index of of this pattern is IH = h / (1+h)               
 IH  is near 1 when there is clumping, near 0 when uniform, and near 0.5 when the data are 
random 

Ip =  0.5 +  0.5 


 Id – Mc

n – Mc 



Ip =  0.5 


 Id –  1
Mu –  1




Ip =  -0.5 


 Id –  1
Mu –  1




Ip =  -0.5 +  0.5 


 Id – Mu

Mu 



The standardized Morisita Index (Ip ) 
ranges from -1.0 to +1.0 with 95%  
confidence intervals at +0.5 and -0.5 

Quadrat size can influence the indices of 
dispersion  
 
 In this hypothetical clumped population with 
regularly distributed clumps: 
 
quadrat A will suggest  a random distribution, 
quadrat B will suggest a clumped distribution, 
quadrat C will suggest a uniform distribution. 

Adapted from Krebs 1999 

r 

* 

x 

* 

organism 
 
random point 
 
 

h =  Σ(xi
2)

Σ(ri
2)
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* 
x 

P 

z Q 
O 

If pattern is random, R =1 
If uniform, R approaches 2.15 
If clumped, R approaches 0 

Spatial Pattern from Distance Methods cont… 
 
T-square sampling procedure: 
 

      
 
 
 
 
 
1. Random point O is located 

 2.   Distance x is measured from O to nearest organism P 
 3.   A second distance z is measured to it’s nearest neighbor, constrained to be in the hemisphere     
to the right of the dashed line, Q.  i.e. the angle must be greater than 90˚. 
 
 
Hine’s statistic = 
 
 

• Ho is a random distribution such that hT = 1.27     
• Ho is evaluated by comparing the calculated hT to critical values from a table for this 

statistic.      
• hT smaller than 1.27 indicates a uniform pattern,  larger than 1.27 indicates a clumped 

pattern. 
 
 
Spatial Pattern from mapped data 
 
If we have the entire population of interest mapped, we can use the Clark and Evans test: 
 

rA = mean distance to the nearest  neighbor  
 

where ri = distance to nearest neighbor for individual i 
n = number of individuals in study area   
ρ = density of organisms = number in area / size of area 

 
Under Ho of a random spatial pattern: 
 
rE = expected distance to nearest neighbor  

 
   

 

Index of Aggregation =  
E

A

r
r

R =  

hT =  2n[2 Σ (xi
2) +  Σ (zi

2)]
[ ( 2  Σxi) +  Σzi]

2

=  Σ ri

n

=  1
2 ρ

z =  r A –  r E

sr

sr =  0.2616
nρ
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r =

 Σ
i = 1

n

(xi – x)(yi – y)

Σ
i = 1

n

(xi – x)2Σ
i = 1

n

(yi – y)2

If  z > 1.96, we reject Ho in favor of positive autocorrelation 
If z < 1.96, we reject Ho in favor of negative spatial autocorrelation 
 

2. Indices of spatial autocorrelation: 
 
Recall: 
 
The correlation coefficient:           
 
 

 
 
 
And the temporal autocorrelation coefficient:          
    (with a lag of k) 
 
 
With some spatial datasets we might logically expect that observations that are close together 
may be more similar than observations that are far apart.  As an 
index of spatial autocorrelation we can use Moran’s I: 
 
   
    
 
  
Where xi is the value of the observation at point i, n is the total number of observations, wij is the 
weight between observation i and j, and So is the sum of all wij’s : 
 
   
   
 
Wij is chosen by the researcher according to the expected nature of the correlation: 

• If you predict that values in adjacent quadrats are correlated you can set 
 wij =1 when i and j share a boundary, and wij = 0 if they don’t 
 

• If you predict that the strength of the correlation depends on the distance between i and j, 
you can set wij = 1/dij, where dij is some measure of distance between i and j  

 
Testing for spatial autocorrelation 
 
Under the Null Hypothesis of no correlation,  Io = -1/(n-1).   
Since we can calculate variance of I, we can test whether observed I (denoted Î)is significantly 
different from Io:   
    
   
 
 

rk =
Σ
t = 1

n – k

(yt – y)(yt + k – y)

Σ
t = 1

n

(yt – y)2

I =  


 n
S0



Σ
i = 1

n

Σ
j = 1

n

wij(xi – x)(xj – x)

Σ
i = 1

n

(xi – x)2

Z =  
Î – I0




Var 



Î 








SO =  Σ
i = 1

n

Σ
j = 1

n

Wij
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Species A

S
pe

ci
es

 B present

absent 

present absent 

a b

c d

Total n

a and b can represent two different individuals, groups, or species 
x = number of instances a and b were observed together 
yab = number of instances a and b were observed apart, at the 

same time (often yab = 0) 
ya = number of instances a was observed and b was not 
yb = number of instances b was observed and a was not 
 

3. Indices of Spatial Association:  
If two types of organisms often occur together in the same place, they are spatially associated 
 
Organisms that don’t move: e.g. Plants 
If we have presence/absence data for quadrats, for 2 species, we can create a 2x2 contingency 
table: 
  
 
 
  

 
 
 
Organisms that move:  
When an organism is capable of moving it’s distribution can change rapidly and so we are 
necessarily concerned with how organisms are distributed in both space and time.   
 
The Half-Weight Index (HWI) is commonly used as an index of association: 
 
 
 
HWI = x/[x + yab + 0.5(ya + 
yb)] 
 
 
 
To test Ho of random association: 

1st randomly generate many alternative data sets with an equal number of individuals and 
observations as the original data set 
2nd calculate HWI for each pair of individuals from the observed data set 
3rd  calculate HWI for each pair of individuals from each of the randomly generated data sets 
     
    
4th  calculate S    
 
 
 
5th Compare S from the observed data set to the distribution of S values from the random data 
sets.  If S from the observed data set is larger than 95% of the S values from the random data 
sets, we reject Ho 
 

    a = # quadrats where both species are present, etc… 
 
 Ho is no association between species A and B, so  
 a = b = c = d 
 we use Ho to calculate expected values of a,b,c,d 
 
test whether the expected values are significantly different 
from observed using Chi-Square with d.f. = (R-1) (C-1) 
 
If p< 0.05 and ad>cb the data suggest positive association 
If p< 0.05 and ad<cb the data suggest negative association 

S =  Σ
i = 1

D

Σ
j = 1

D
(Oij – Eij)

2

D2

D = total number of individuals observed 
Oij = HWI for individuals i and j  
Eij = mean HWI for individuals i and j from 

the randomly generated data sets 
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CHAPTER 10: PRIMER ON PATIAL SMOOTHING 
Gale Bravener 

 
“Smoothing is a statistical technique…to capture important patterns in a set of data, while leaving 
out noise or other fine-scale structures…” (Sheehy 2009) 
 

• Like smoothing of time series data: 
o spatial smoothing is used to remove distracting noise present in spatial data in 

order to reveal patterns that are not evident visually.   
o spatial smoothing calculates a value at a specific location as a function (e.g. 

average) of its neighbours 
 

 
 
 
 
    → 
 
 
 
 
 

 
 
I. WHEN TO USE SMOOTHING? 
 

• Detecting patterns in spatial data, especially point data 
• Provides insight but not precise estimates of location, spread or trends. 
• Useful where data are known to be of low precision or small sample sizes 
• To convert discrete point data to a contour map or continuous density map 

 
 
II. WHAT MAKES A GOOD SMOOTHER? 
 
Some objectives of smoothing: 
 

1) reduce the variance so that underlying trends can be seen 
2) reduce attention to outliers or transients 
3) examine patterns in residuals that can be revealed once the smoothed trend has been 

removed 
4) minimize the effect of aggregation in what may be a summary data point across an entire 

region        
(Kafadar 1999)  
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Some characteristics of a good smoother: 
 

1) displays the true pattern as accurately as possible 
2) performance should not be impaired if the data are not evenly spaced 
3) its output should be ‘smooth’ where F (the true function of xi) is, without attempting to 

smooth over obvious breaks 
4) unusual values, unsupported by neighbours, should stand out clearly in the residuals, not 

in the smooth        
(Kafadar 1999) 
 
III. TYPES OF SMOOTHERS 
 
Recall temporal smoothers:  Moving Averages, Weighted Average, Kernel, Spline, etc. 
 
Spatial smoothers:   

• Linear:  Trend Surface Analysis, Moving Averages, Kernel, Spline, IDW 
• Non-Linear: Median filters, Head-banging 

 
 Linear smoothers expose extremely broad, non-specific trends, and non-linear smoothers 

identify sharp distinctions between regions 
 
Choropleth maps 
 
• simple smoother – converts point data to choropleth to isopleths (= contour map) 
• degree of smoothing depends on the number of classes the values are put into    
• smooths by assigning data values to categories (interval to ordinal data). 
 

 
 
 
 
 
 
 
 

raw           quadrats                 densities           choropleth        contours 
 
1.  Trend surface analysis  
 

• entire surface is approximated by a polynomial equation 
 

• surface is estimated by an ordinary least squares regression.  
  

• peculiar in that the two independent variables represent two perpendicular spatial 
dimensions, and the dependent variable represents a variable (e.g., elevation) 
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• Trend surface analysis (cont’d) 
 

• a linear equation (first order polynomial) describes a tilted plane surface:  
 

z = a + bx + cy  
 
 

• quadratic equation (second order polynomial) describes a simple hill or valley 
 

z = a + bx + cy + dx2 + exy + fy2  
 

• cubic equation adds more complexity 
 

z = a + bx + cy + dx2 + exy + fy2 + gx3 + hx2y + ixy2 + jy3  
 
 
• By analogy, it’s like taking a piece of paper and fitting it to a landscape (e.g. a slope).  A flat 

plane (no bend in the piece of paper) is a first-order polynomial (linear). 
 
 
 
 

 
 
 
 
• But a flat piece of paper will not accurately capture a landscape containing a valley unless 

you bend it.  Allowing for one bend is like a second-order polynomial (quadratic), two 
bends a third-order (cubic), and so forth 

 
 
 
 
 
 
 
 
 
 
LOESS (locally weighted regression) is a type of trend surface analysis: 

• for fitting a regression surface to data through multivariate smoothing. 
• The dependent variable is smoothed as a function of the independent variables in a 

moving fashion analagous to moving averages in time series (Cleveland 1988) 
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     → 
 
 
 
 

                             
                     (Kafadar 1999) 
 
2.  Moving Average Smoothers (aka Moving Windows) 
 

• uses circular or square filtering window 
• uses the average value of data points within the window to calculate the value  
• averaged values have less variability and are thus spatially smoothed. 

 
example: 

 
 

• circle around quadrat 53 defines the window, average of the 33 quadrats within window 
gives the smoothed value for 53 

• The choice of window size is very important (large windows reveal better regional 
patterns than local patterns) 

 
A more common approach is to use weighted moving averages for smoothing.  This allows 
points nearby to have more influence than points far away.  Common weighted methods include: 
 
 
3.  Kernel estimation  
 

• similar to moving averages in that it uses a moving window, but the kernel method 
weighs nearby objects more than far ones.   
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Kernel estimation (cont’d)  
 

• For a 2-D surface, a common kernel is: 

 
• Where h is bandwidth, n is the number of points within the bandwidth,               (x-xi) 2 + (y-

yi) 2 measures the deviation in x-y coordinates between points (xi, yi) and (x, y).   
• A kernel function looks like a bump centered at each point xi, and tapering off to 0 over a 

window or “bandwidth” 
 

 
 
4.  Inverse Distance Weighted (IDW)  
 

• another moving window method 
• estimates unknown values as the weighted average of its surrounding points, in which the 

weight is the inverse of the distance raised to a power 
• it is an exact smoother, so the exact known data values are honoured 

 

 
 
Problems with IDW: 

• when points are clustered, or more dense in some areas than others, steps appear 
• spikes or pits occur around data points because they are “honoured” 
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5.  Splining  
 

• polynomial regression is “global”, while moving averages, kernel, IDW are “local” – 
splining offer a compromise by using a “piecewise polynomial” 

• creates a surface that predicts the values exactly at all control points and has the least 
change in slope at all points 

• cubic splines are commonly used 
 

 

 
Problems: 

• Splines tend to generate steep gradients in areas where data is sparse. 
• poor for surfaces which show marked fluctuations - can cause wild oscillations  
• are popular in general surface interpolation packages but are not common in GISs 

 
 
6.  Kriging  
 

• a common method for interpolation.   
• models spatial variation as three components  

o a spatially correlated component (representing the regionalized variable) 
o a drift or structure (representing the trend)  
o a random error 

• The heart of kriging is the semivariogram 
• This is the a priori information that you must supply in order to interpolate 
• The idea is to get an estimate of the distance one would need to travel before data points 

become uncorrelated.  
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First, remember the definition of variance:  

 
The variance of a data set is a number, but the semivariance is a curve derived from the data 
according to:  

 
where h is the lag distance between data points. This 
is known as the experimental variogram, computed 
from the data.   
 

A model is chosen by matching the shape of the curve of the experimental variogram to 
the shape of the curve of the mathematical function. 
 
 
 
 
 
 
 
 
 

 
 
• If data is isotropic, an omni-directional semivariogram is used (angle is ignored)  
• If data is anisotropic, the directional semivariogram is indicated (eg. vertical or 

horizontal) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Calculate 
variogram using all 

points that fall in the 
lag and angle 

tolerance 

2. Repeat for all points and all 
lags, and plot 
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• There are several models of semivariance top pick from (linear, exponential, 
spherical, etc.)…….The trick is to pick the one that best fits your data! 

 
 

• The model is then used to determine weights applied to neighbouring points. 
 

For example, the exponential model: 

 
 

• Nugget (co):  variation or 
measurement error – seen as y-
intercept 

 
• Range (a): controls the degree of 

correlation between data points, 
usually represented as a distance  

 
• Sill (c): The value of the 

semivariance model as the lag (h) 
goes to infinity - it is equal to the 
total variance of the data set.  

 
The linear model is the simplest and one of the most common 
 
In the linear model: 

• the semivariance increases as the lag increases 
• no indication of a sill or range 
• concerned with the slope and intercept  

 
 
 
and the slope (b) is nothing more than the ratio of the sill (c) to the range (a). 
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“… linear smoothers tend to be somewhat unsatisfying in situations with abrupt features, 
extreme values, or outliers.  Because non-linear smoothers use medians, abrupt features 
will be retained far better than with linear smoothers” (Kafadar 1999). 
 
 
7.  Head-banging  
 

• median-based smoother intended for use on 
non-gridded spatial data 

• designed to remove small-scale local variations 
within a data-set while preserving regional 
trends 

• tends to not over-smooth zones of sharp 
transition, which can be good or bad 

• The procedure is as follows: 
 

 
         (Kafadar 1999) 

 
Problems: 

• Smooths out spikes, which may not be good, depending on the data.   
• Tends to produce high rates on the boundaries of study areas. 

 
 IV. HOW TO USE SMOOTHERS? 
 

• Different smoothers are better for different purposes and different data  
• The best strategy is to use several smoothers and compare the results 
• Use an iterative approach (smooth, plot, adjust; re-smooth, re-plot, readjust)  
• As with time series data, the residuals (noise) can be evaluated, or removed (detrended) 

to identify patterns in the data. 
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Removing the first order trend (a tilted plane) reveals clearer patterns in the residuals 
 
 
V. INTRODUCTION TO SPATIAL INTERPOLATION 
 
• The goal of interpolation is to derive a value at some intermediate location other than 

where data are taken 
 
• Many methods used for exploration (smoothing) are also used for interpolating 

o Inverse Distance Weighting (IDW), Splining, Kriging 
 
• As with smoothing, different interpolators are better for certain types of data -         (See 

ArcGIS Spatial Analyst information at end of primer for details). 
 
 
An example from my own data: 
 
The goal:  Use measured depth data to interpolate bathymetry, and estimate water depth at 
many (~75,000) x-y locations where fish were positioned. 
 

1. Mapped x-y depth points in the 100m x 400m study area using ArcGIS 
2. Interpolated depths across entire area 

a. TIN (triangular irregular network) attempted first 
b. Splining, Kriging, IDW all attempted 

3. Realized transects and clumped data having too much effect 
4. Took random sample of 5000 points, and re-evaluated interpolation methods 
5. Decided on IDW as best method – fewest spikes in data, least influence of transects on 

data 
6. used “extract values to points” tool in ESRI Spatial Analyst to obtain depths 

 
See next page for graphics… 
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CHAPTER 11: PRIMER ON SPATIAL AUTOCORRELATION 
Mark D’Aguiar 

 
If there is systematic spatial variation in the variate, then the phenomenon being studied is said 
to exhibit spatial auto correlation.   

 
Why spatial autocorrelation is important 

Recall:  assumption that observations are independent  

• Positive spatial autocorrelation may violate this. 

•  Measures the extent to which the occurrence of an event in an area, makes the 
occurrence on an event in a neighboring area / unit more probable 

• Goals of spatial autocorrelation: 

• Measure the strength of spatial autocorrelation in a map  

•  test the assumption of independence or randomness 

Fig. 1 Spatial Autocorrelation – correlation of a variable with itself through space. 
 
A. Completely separated 
pattern (+ve) 

B. Evenly spaced pattern    
(-ve) 

 
 
 
 
 
• If there is any systematic 

pattern in the spatial 
distribution of a variable, it is 
said to be spatially 
autocorrelated  

 
• If  nearby or neighboring areas 

are more alike, this is positive 
spatial autocorrelation  

 
 
• Negative autocorrelation 

describes patterns in which 
neighboring areas are unlike 

 
 
• Random patterns exhibit no 

spatial autocorrelation  
 

  
 
C. Random pattern 

 
D. real life data example 
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SPATIAL AUTOCORRELATION 
• Non-spatial independence suggests many statistical tools and inferences are 

inappropriate. 
• Correlation coefficients or ordinary least squares regressions (OLS) to predict a 

consequence assumes that the observations have been selected randomly. 
• If the observations, however, are spatially clustered in some way, the estimates 

obtained from the correlation coefficient or OLS estimator will be biased and 
overly precise. 

• biased :  areas with higher concentration of events will have a greater impact on 
the model estimate and they will overestimate precision .   

 
General Considerations: 

• most based on a sample of localities from an area, or points on a plane.  
• Points can be regularly distributed (i.e. grid) or lattice like typical ecological sampling. 
• Variables can be nominal (categorical e.g. colour morphs, BW, genotypes), Ordinaal 

(ranked e.g. n localities ranked in order of population density for a species occurring 
there), or interval (continuous e.g.  gene frequencies, morphological measurements etc.) 

• The single value of a variable at each point may be based of single observation (e.g. 
species i.d.  of an individual found at a point in an area), or based on a sample of 
individuals taken from a locality 

• Not all pairs of points will be correlated. Investigator chooses the criteria for nearest 
neighbor connections.  

 
 
Simple adjacency / join structure / connectedness.  
Rook connections,       Bishop  connections,  Queen Connections 

 
 
More complex or irregularly distributed points:  

• Gabriel-Connection graph- Any two localities A and B are considered connected if 
no other locality lies on or within the circle who’s diameter is in the line AB. 

 

 

Points a and b are 
Gabriel 
neighbours, as c is 
outside their 
diameter circle 

 

The presence of 
point c within the 
circle prevents 
points a and b from 
being Gabriel 
neighbors. 

http://upload.wikimedia.org/wikipedia/en/3/35/Gabriel_Pairs.JPG�
http://upload.wikimedia.org/wikipedia/en/2/27/Not_Gabriel_Pairs.JPG�
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Indices of Spatial Autocorrelation 
Join Count Analysis (Nominal Data) 
 

• Join = edge connecting two point or localities  
• points that are like or unlike with respect to the nominal variable (i.e. categorical variable 

such as spatial distribution of colour morphs.) 
• Used to determine whether the classes of points in a regular grid or other spatial 

structure are random or patchy in their distribution 
• Comparing the observed number of time that members of the same class are found at 

adjacent grid points with the number expected if the classes are randomly arranged. 
• Free sampling vs. non free sampling (equations in APPENDIX A) 

 
Example: refer to figure 1 A – D.  
Join count computation 

 

 
A. Positive autocorrelation 

 
 
B. Negative autocorrelation 

 
 
 C.  Random model — no discernable 
autocorrelation 

 
 
D. Atriplex hymeneltrya — positive BB 
autocorrelation 

 
 

 
1. Select connection (i.e rook, queen) 
2. Specify Ho (probability that a cell is a 

particular colour, independent of all 
colors 

3. Apply equations to determine 
observed joins [(BB,BW,WW) 
APPENDIX A] 

4. Apply equations to determine 
Expected Values , and expected 
variance . 

5. Make decision 
 
**more complex joins with weights use 
matrix and equations (See Cliff and Ord 
1973) 
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Moran’s I (Interval  Ordinal)  

• One of the oldest indicators of spatial autocorrelation (Moran, 1950).  Still a defacto 
standard for determining spatial autocorrelation 

• Applied to zones or points with continuous variables associated with them. 

• achieved by division of the spatial  covariation by the total variation. 
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Wij is chosen by the researcher according to the expected nature of the correlation: 

• If you predict that values in adjacent quadrats are correlated you can set 

 wij =1 when i and j share a boundary, and wij = 0 if they don’t 

-i.e.  If zone j is adjacent to zone i, the interaction receives a weight of 1 

• Another option is to make Wij a distance-based weight which is the inverse distance 
between locations I and j (1/dij), thus wij  = 1 / dij; where dij is some measure of distance 
between i and j  

•  

• Compares the sum of the cross-products of values at different locations, two at a time 
weighted by the inverse of the distance between the locations 

• Similar to correlation coefficient, it varies between –1.0 and + 1.0 

 

 

 

 

Testing for spatial autocorrelation / significance 

• Empirical distribution can be compared to the theoretical distribution by dividing by an 
estimate of the theoretical standard deviation 
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N is the number of cases 
Xi is the variable value at a particular location 
Xj is the variable value at another location 
X is the mean of the variable 
Wij is a weight applied to the comparison between 
location i and location j 
*denotes the effect of  i on j by the weight of wij 
 

When autocorrelation is high, the 
coefficient is high 
A high I value indicates positive 
autocorrelation 
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If  z > 1.96, we reject Ho in favor of positive autocorrelation 
If z < 1.96, we reject Ho in favor of negative spatial 
autocorrelation 
 

Under the Null Hypothesis of no correlation,  E(I) = -1/(n-1).   

Since we can calculate variance of I, we can test whether observed I (denoted I )is significantly 
different from E(I):   

 

 

 

 

Geary’s C (Interval/ Ordinal) 

 ∑ ∑
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• Similar to Moran’s I (Geary, 1954) 

• Interaction is not the cross-product of the deviations from the mean, but the deviations 
in intensities of each observation location with one another 

• Value typically range between 0 and 2 

• If value of any one zone are spatially unrelated to any other zone, the expected value of C 
will be 1 

• Values less than 1 (between 1 and 2) indicate negative spatial autocorrelation 

• Inversely related to Moran’s I 

• Does not provide identical inference because it emphasizes the differences in values 
between pairs of observations, rather than the covariation between the pairs. 

• Moran’s I gives a more global indicator, whereas the Geary coefficient is more sensitive 
to differences in small neighborhoods. 

 

Testing the Significance 

)(

)()(
CES

CECCZ −
=

 
SUMARRY  

HOW TO COMPUTE SPATIAL AUTO CORRELATION (MORANS I and GEARY’s C) 

1. Specification of Ho: probablility that  a quadrat received a particular xi, is the same for 
each quadrat, and the level of Xi observed is fixed independently 

2. Significance level: Examine Ho at 0.05 

3. Sampling distribution assume normality of I and C 

4. Determine region of rejection, indicated by H1 
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5. The measurement scale dictates the type of measure,  

6. assign weights to the cases  

7. create a matrix representing the relationships between variables into software which will 
compute measure of the spatial autocorrelation between the input data matrix 
(APPENDIX A).  

8. When building a  contiguity matrix be cognizant of the relationships between cases, 
are neighbors determined on a eight directional Queens case or non-diagonal, four 
directional Rooks case.  

 
OTHER TESTS (point wise distance data) 

• Creating a correllogram using the 
coefficients vs. distance.  

 
 
 
Mantel Test (Mantel z) 

• Moran's I is a parametric test while 
Mantel's test is semi-parametric 

• Both test against the null that there is no spatial autocorrelation.   
• Moran's I does this with a correlation that is weighted by inverse distances; 
•  Mantel test examines the correlation between two distance matrices and generating a 

null distribution for this correlation by randomly permuting one of the matrices: 
o distance matrix’: consists of the distance between all pairs of sites 
o Correlation matrix: consists of the similarilty between the values across all pairs 

of sites 
• Visualize using correlation coefficients. 
• Mantel process tests patterns using a randomization test in which one of the matricies is 

shuffled, and the resulting resulting coefficient compared with the observed (unshuffled) 
regression. The end product = Mantel z value which indicates whether or not 
autocorrelation changes with distance. (Koenig 1998)  

• Plot mantel correlogram –this tests for autocorrelation relative to the overall data set.  
 
 
 
 
 
 
 
 
 
 
 
 

Distance (km) 
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The analysis of regression residuals 
• On many occasions regression analysis is carried out to look for autocorrelation in the 

residuals from a regression. Detection of autocorrelation among residuals can imply: 
1) The presence of nonlinear relationship b/w dependant and non dependant 

variables;  
2) The omission of one or more regressor variables 
3) That the regression should have an autoregressive structure. 

If ‘1’ is important, different models can be specified and interaction terms among independant 
variable included.  
If ‘2’ is the main cause of the auto correlation, additional variables may be suggested by plotting 
residuals on a map and looking for regular patterns. 
If ‘3’ is thought to be the main cause, some kind of transformation needs to be carried out (refer 
to chapter 5 Cliff and Ord, 1973) 
 Uses of assessment of spatial autocorrelation: 

• identification of patterns which may reveal an underlying process,  
• describe a spatial pattern and use as evidence, such as a diagnostic tool for the nature of 

residuals in a regression analysis,  
• as an inferential statistic to buttress assumptions about the data,  
• data interpolation technique.  

 
How to Correct for Spatial Autocorrelation in Regression: 

• indicates incomplete model, there may be a missing variable. Therefore add an additional 
variable which may change data pattern.  

• incorrect model specification. The data may not be appropriate for a linear fit, or a non-
spatial effect may be manifest in the residuals, nuisance spatial autocorrelation. 
Substantive spatial autocorrelation occurs when there is missing values.  

• dominant or extreme cases, outliers, which  should have been found at data screening 
stage.  

• systematic measurement error in response variable (non-random). A case in which error 
increases as values increase, or vice versa.  

• regression model is inappropriate,  reflects the need for an explicitly spatial model. A 
spatially autoregressive model which incorporates a spatial lag operator into the 
regression computation. The approach for the implementation of spatial autoregressive 
models is as follows:  

o establish nature of spatial dependency,  
o use information to choose appropriate model form,  
o fit model using maximum likelihood operators,  
o calculate residuals from model,  
o test residuals, and  
o adjust model based upon residuals. (after Haining, 1990)  

http://cfs.nrcan.gc.ca/subsite/wulder/outliers�
http://cfs.nrcan.gc.ca/subsite/wulder/regression�
http://cfs.nrcan.gc.ca/subsite/wulder/references�
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APPENDIX A 
 
Computational Formulas, expected values, and variances of autocorrelation statistics 

Nominal Data (for K > 2 classes or types) 

Join counts 

Total joins  A = ½  

 For localities of the same type:  

 Number of rr joins =  

 Expected values or rr joins  ( , 

 Expected variance: 

 

For localities of different types 

 Number of rs joins =   

 Expected Values of rs joins: , 

Morans statistic 

Expected values: = -(n-1)—1 
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Expected variance: 

 
 

 
Adjacency and Weighted Matrices 

A. Source data 
  +4.55 +5.54 
+2.24 -5.15 +9.02 
+3.10 -4.39 -2.09 
  +0.46 -3.06 

 

 

B. Adjacency matrix, W 

 
 

A. Computation of variance/covariance-like quantities, matrix C 

 
B. C*W: Adjustment by multiplication of the weighting matrix, W 
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 CHAPTER 12 PRIMER ON SPATIAL-TEMPORAL ANALYSIS 
Timothy J. Bartley 

 

Spatial-Temporal Analysis 
 

 
 from <http://en.wikipedia.org/wiki/Spacetime> 

 
I. Space and Time 

  

 
Time  →          ↑                                 Space                →     

 
    ↑ Space →               ↑ Space →                               ↑ Space → 
          Time  →→→→→→→→→→→→→→→→→→→→→ 
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II. Autologistic Regression in Space and Time 
 

a. Linear regression  
⇒ used to examine the relationship between one or more independent variables 

(

 

x j) and a continuous dependent variable (

 

Yi) 
⇒ least squares function 

 

 

Yi = β0 + β1x1,i + β1x2,i + ...+ β j x j,i + εi  where  

 

i =1,...,n  
 

b. Logistic regression 
⇒ used to predict the probability of occurrence of an event  
⇒ fit data to a logistic curve using a logit model 
⇒ the dependent variable (

 

Y ) is binary (0,1 or present/absent) 
 

 

ln( π
1− π

) = β0 + β1x1 + β1x2 + ...+ β j x j + ε   OR   

 

π i =
eβ 0 +β1x1 +β 2x2 +...+β j x j

1+ eβ 0 +β1x1 +β 2x2 +...+β j x j  
 

 

π  = probability that 

 

Y = 1 for a given 

 

x j  

 

β0= intercept 

 

β j  = coefficent that relates observed occurrence 

 

Y  to covariates 

 

x j  =  covariates (explanatory variable) 

 

ε = binomially distributed error term 
       

c. Maximum likelihood 
⇒ used to evaluate logistic regression 
⇒ least squares cannot be used for model with binary dependent variable 
⇒ fits values for the parameters which maximize the probability of obtaining the 

observed data 
⇒ the set of values which give the greatest likelihood are used as estimators of the 

parameters of interest 
 

 

λ = lnL = ln f (gn;β0,β1,...,β j )
n=1

N

∏  

  

 

L= the likelihood function 
  

 

gn = each of N total observations 

 

β j = parameters which are to be estimated 
 

⇒ significance can be tested by taking the ratio of each parameter estimate to its 
standard error (the z-ratio), with values of magnitude 1.96 or greater significant 
at the α = 0.05 level 

⇒ significance can also be tested using Monte Carlo maximum likelihood 
simulations 

http://en.wikipedia.org/wiki/Independent_variable�
http://en.wikipedia.org/wiki/Least_squares�
http://en.wikipedia.org/wiki/Probability�
http://en.wikipedia.org/wiki/Logistic_curve�
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⇒ best model fit can be determined in several ways including though the use of 
information criteria, such as Akaike’s information criterion (AIC), deviance 
information criterion (DIC), or Bayesian information criterion (BIC) 

 
 

d. Autologistic regression  
⇒ logistic regression model with extra explanatory variables representing spatial 

effects 
⇒ incorporates spatial dependence to account for potential autocorrelation 

 
 

 
 

  k 

  k      i      k 

  k 
 

 
 

 

ln( π i

1− π i

) = β0 + β j x j,i
j

∑ + αkYk,i
k

∑ + εi

 
 

 

π  = probability that 

 

Y = 1 at position 

 

i  for a given 

 

x j,i 

 

Y =binary (0,1) occurence 

 

β0= intercept 

 

β j  = coefficent that relates observed occurrence 

 

Y  to covariates 

 

x j  =  covariate (explanatory variable) 

 

αk = coefficient that relates observed occurrence 

 

Y  at position 

 

k  to predicted 
probability of occurrence 

 

π  at position 

 

i  

 

ε = binomially distributed error term 
 

⇒ Neighbour order ( l ) 
 
 
 
 
 



Spatial and Temporal Analysis in Ecology: A Primer 

91 

 

 
             First Order (l=1)           Second Order (l=2)         Third Order (l=3) 

 
⇒ Spatial terms can be averaged into a single spatial autocovariate (assuming 

isotropy) 
 

 

ln( π i

1− π i

) = β0 + β j x j,i
j

∑ + s(Yi) + εi   where   

 

s(Yi) =
wkYk,i

k≠ i
∑

wk∑
  and  

 

wk ∝
1

distancek,i  
 

e. Spatial-temporal autologistic regression model (STARM)  
⇒ logistic regression model with extra explanatory variables representing both 

spatial and temporal effects 
 

 

ln( π i,t

1− π i,t

) = β0 + β j x j ,i,t
j

J

∑ +
1
2

αJ + l
l

L

∑ Yk,t
k ∈N ( l )

K

∑ + δJ +K +sYi,t− f
f

F

∑ + εi,t  

 
   

response   intercept   variables      space  time       error 
 
 

 

π  = probability that 

 

Y = 1 at position 

 

i  for a given 

 

x j,i 

 

β0= intercept 

 

β j  = coefficent that relates observed occurrence 

 

Y  to covariates 

 

x j  =  covariate (explanatory variable) 

 

α= coefficient that relates observed occurrence 

 

Y  at position 

 

k  from     neighbourhood 

 

l to predicted probability of occurrence 

 

π  at position 

 

i  

 

ε = binomially distributed error term 

 

f = each of 

 

F  total time lags 

 

δ  = coefficient that relates observed occurrence 

 

Y  at position 

 

k  and time lag 

 

f to 
predicted probability of occurrence 

 

π  at position 

 

i  
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  k      
      k       i       k       i     
  k      
 
 
       Y for each k  at time t - f         π  that Y = 1 at i at time t 
 
 

⇒ achieved using ‘Markov random fields’ 
⇒ define the probability of an event based on a number of variables 

 
  

 

p(Yi,t =1 |Yk,t ' : k ∈ Ni,Yt ' : t '= t −1,...,t − F) 
⇒ probability that 

 

Y  at position 

 

i  and time 

 

t  is equal to 1 given the neighbours  

 

k  
in the neighbourhood 

 

Ni  and given 

 

Y  at time lags from 

 

t −1 to 

 

t − F  
 

 Example: Mountain pine beetle outbreaks in British Columbia. 

 
black spots represent actual outbreaks 

  
 
 
 
 
 
 
 
 
 
 
 

 
(Aukema et al. 2008) 

 
Synopsis: Spatial-temporal autologistic regression model (STARM) can be used to examine the 
probability the occurrence of an event across a spatial lattice over discrete time points. 
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III. Travelling Waves in Space and Time 

⇒ “Travelling waves in cyclic populations refer to temporal shifts in peak densities 
moving across space in a wave-like fashion” (Johnson et al 2004). 

⇒ used to examine the partial temporal synchrony or asynchrony of populations 
which are spatially separated 

 
 
 

Time →→→→→→→→→→→→→→→→→→→→→ 
 
   (from Kaitala and Ranta 1998) 

⇒ Data needed are estimates of population density (or other population factors) at 
different sites over time 

 

 
time series for several spatial locations      (from Moss et al 2000) 

 
⇒ First, must determine a relationship between distance and dynamics (using 

Mantel correlation between two matrices, for example) 
⇒ Second, fit a model to the data 
⇒ Typically based on generalized additive models (GAMs) 
⇒ Take a temporal pattern and add time lags based on location 
⇒ For a distribution (normal, binomial, etc.), represents a function 

 

gthat links the 
expected value 

 

E(Y ) of the distribution to the parameters 

 

fm (xm )  
 

 

g(E(Y )) = β0 + f1(x1) + f2(x2) + ...+ fm (xm ) 
 

⇒ Models for travelling waves typically links a demographic variable (usually 
density) to spatial, temporal and other factors 
 

 

logDi,t = mi + tbi + s(t + r(cosθyi + sinθxi)) + εi,t  
 
 
response  long term trend  error 
 
     mean spatial and temporal effects 
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Di,t = demographic variable of interest 

 

m  = long term mean of D at 

 

i  

 

bi  =long term trend at 

 

i  

 

s = function representing temporal and spatial pattern 

 

r ∝
1

distance
 

 

θ  = angle between direction of wave and North 
 

 

 
(from Moss et al. 2000) 

   where 

 

pi(θ) = r(cosθyi + sinθxi)  
 
 

⇒ The s function can be any number of potential equations 
⇒ Parameters 

 

r  and 

 

θ  are estimated by iterative analysis of deviance, with values 
for

 

r  and 

 

θ  with a minimum deviance considered the best fit 
⇒ Assumes unidirectional movement (one spatial axis) 

 
       (from Sherratt and Smith, 2008) 

 
⇒ Can also fit a model for radiating rings from a central point  
⇒ Models can also use second order partial differential equations 
⇒ Third, test for significance 
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⇒ Significance can be tested by comparing the deviance of models iteratively 
randomly re-assigned to locations to the deviance for models of the observed 
data 

⇒ Can be considered at a variety of scales 
 

 
(MacKinnon et al. 2001) 

 
Example: Modelling predator – prey travelling waves. 

 
        (From Sherratt 2001) 
 

⇒ observed in larch budmoth, red grouse, voles, lemmings, lynx (see Sherratt and 
Smith 2008) 

 
(Sherratt and Smith 2008) 

 
Synopsis: Travelling wave models can be used to test for and estimate patterns in  spatial asynchrony 
in temporal population dynamics. 
 

III. Spectral Analysis in Space and Time 
⇒ Can be used to deconstruct time series distributed in space into component 

frequencies 
⇒ Requires that data are collected at even intervals in both space and time 
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Examples: Spatio-temporal patterns of rainfall. 

   
 

       Spectral desnity  
 

 
 
 
 
 

x-coordinate     y-coordinate 
 
 

(from De Michele and Bernardara 2005) 
 
 
 
 
 
 

Mapping brain activity in space and time. 

 
(from Santhosh et al. 2008) 

 
 

IV. Wavelet Analysis in Space and Time 
⇒ Recently have been applied to examine travelling waves in space and time 

 
 Examples: Travelling waves in the larch budmoth. 

  
(from Johnson et al 2004) 

 
Travelling waves in host-parasitoid interactions. 
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(from Liebold et al. 2004) 

 
 
 
 

V. Kriging in Space and Time 
  
   

correlation 
 
 
 
 
 
 
 

spatial lag    temporal lag 
 
 
 
 
 
 
 

correlation 
 
 
 
 
 

temporal lag   spatial lag 
 
 

(from Douaik 2005) 
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